Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14°C (mean river water temperature). Sunlight inactivation (k S ) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (k D ) rates in enclosed (control) chambers. The overall k S ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms > E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.
Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kD s), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kD s were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS ), as a function of cumulative global solar radiation (insolation), were all higher than thekD s with a consistentkS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibitedkS s similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, thekS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival of somatic coliphages in our experiments suggests that they warrant further consideration as fecal, and possibly viral, indicators in marine waters.
Aims: To develop an improved method for the detection of Bi®dobacterium adolescentis as an indicator of human faecal pollution. Methods and Results: Bi®dobacterium medium (BFM) was identi®ed as the optimal medium for the recovery of bi®dobacteria from human ef¯uent. Dilutions of faeces and ef¯uent from both humans and animals were ®ltered, grown on BFM and human speci®c B. adolescentis identi®ed via colony hybridization with a digoxigenin (DIG)-labelled oligonucleotide probe. Conclusions: The combination of BFM with colony probing allows the detection of B. adolescentis, a speci®c indicator of human faecal pollution. Signi®cance and Impact of the Study: It is now technically feasible to use B. adolescentis as indicators of human faecal pollution, and studies to examine the survival and appropriateness of bi®dobacteria in this role can be initiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.