HIV-associated sensory neuropathy (HIV-SN) is a frequent neurological complication of HIV infection and its treatment with some antiretroviral drugs. We review the pathogenesis of the viral- and drug-induced causes of the neuropathy, and its primary symptom, pain, based on evidence from in vivo and in vitro models of HIV-SN. Viral coat proteins mediate nerve fibre damage and hypernociception through direct and indirect mechanisms. Direct interactions between viral proteins and nerve fibres dominate axonal pathology, while somal pathology is dominated by indirect mechanisms that occur secondary to virus-mediated activation of glia and macrophage infiltration into the dorsal root ganglia. The treatment-induced neuropathy and resulting hypernociception arise primarily from drug-induced mitochondrial dysfunction, but the sequence of events initiated by the mitochondrial dysfunction that leads to the nerve fibre damage and dysfunction are still unclear. Overall, the models that have been developed to study the pathogenesis of HIV-SN, and hypernociception associated with the neuropathy, are reasonable models and have provided useful insights into the pathogenesis of HIV-SN. As new models are developed they may ultimately lead to identification of therapeutic targets for the prevention or treatment of this common neurological complication of HIV infection.
BackgroundHuman immunodeficiency virus (HIV)-associated sensory neuropathy (SN) is the most frequent neurological complication of HIV disease. Among the probable mechanisms underlying HIV-SN are neurotoxicity induced by the HIV glycoprotein gp120 and antiretroviral therapies (ART). Since HIV-SN prevalence remains high in patients who have not been exposed to toxic ART drugs, here we focused on gp120-mediated mechanisms underlying HIV-SN.MethodsWe hypothesized that a direct gp120–sensory neurone interaction is not the cause of neurite degeneration; rather, an indirect interaction of gp120 with sensory neurones involving macrophages underlies axonal degeneration. Rat dorsal root ganglion (DRG) cultures were used to assess gp120 neurotoxicity. Rat bone marrow-derived macrophage (BMDM) cultures and qPCR array were used to assess gp120-associated gene expression changes.Resultsgp120 induced significant, but latent onset, neurite degeneration until 24 h after application. gp120–neurone interaction occurred within 1 h of application in <10% of DRG neurones, despite neurite degeneration having a global effect. Application of culture media from gp120-exposed BMDMs induced a significant reduction in DRG neurite outgrowth. Furthermore, gp120 significantly increased the expression of 25 cytokine-related genes in primary BMDMs, some of which have been implicated in other painful polyneuropathies. The C–C chemokine receptor type 5 (CCR5) antagonist, maraviroc, concentration-dependently inhibited gp120-induced tumour necrosis factor-α gene expression, indicating that these effects occurred via gp120 activation of CCR5.ConclusionsOur findings highlight macrophages in the pathogenesis of HIV-SN and upstream modulation of macrophage response as a promising therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.