Many undergraduate students find the production of an extended piece of academic writing challenging. This challenge is more acute in the sciences where production of extended texts is infrequent throughout undergraduate studies. This paper reports the development of a new English for Academic Purposes (EAP) workshop and associated resources for third year undergraduate chemists to support their dissertation module. The workshop is designed to utilise a searchable database of student texts (a corpus) developed as part of the FOCUS project at Durham University. This novel use of data-driven learning (DDL), common in second language pedagogy, transfers well to the chemistry classroom as the processes of research and discovery (of words rather than chemicals) involved in DDL parallel similar processes in chemistry research. Our workshop and online consolidation activities have been positively evaluated by both staff and our current cohort of students. The project is being rolled out across other departments at Durham as well as the corpus tool being utilised at other UK HEIs. This corpus-based approach to academic writing in chemistry offers a unique perspective on the interplay between language and scientific literacy.
The first transition metal complexes of cyclic triphosphenium ions have been unequivocally identified in solution by (31)P NMR spectroscopy. The ligands coordinate to platinum(II) via the central phosphorus atom, but only when at least one of the outer phosphorus atoms has non-aromatic substituents. Depending on the system, either trans- (the kinetic reaction product) and/or cis- (the thermodynamic reaction product) complexes are formed. The (1)J coupling constants between (195)Pt and the central phosphorus atom of the CTI (P(A)) are small for both cis- and trans-isomers, between 900 and 1300 Hz, whereas other phosphanes in these complexes derived from the platinum(II) starting material show normal (1)J(PtP) values. These results suggest a possible long P-Pt bond between the overall positively charged ligand and the platinum(II) cation. Calculations including predicted (31)P NMR shifts for the CTIs and their Pt(II) complexes largely support our experimental findings.
Selected group 14 tetrahalides EX(4) (E = Si, Ge or Sn; X = Cl or Br) have been reacted in various molar ratios with ArLi, where Ar = 2,5-(CF(3))(2)C(6)H(3). The compounds Ar(2)SiCl(2)1, Ar(3)SiF 3, Ar(2)Si(OH)(2)4, Ar(2)GeCl(2)7, Ar(2)Ge(Br)Ge(Br)Ar(2)8, Ar(3)SnCl 10, Ar(4)Sn 11 and Ar(3)SnBr 12 have been isolated, and characterised by single-crystal X-ray diffraction, elemental analysis and (19)F solution-state NMR spectroscopy.
Reaction of a diphosphane with a chlorophosphane in the presence of SnCl(2) or AlCl(3) leads to the formation of dicationic heterocycles with three (3P) or four (4P) linked phosphorus atoms. Some 3P derivatives with small alkyl substituents may also be prepared by direct alkylation of cyclic triphosphenium ions. Several new species were prepared in solution, some of which were isolated and characterised by single-crystal X-ray diffraction. Investigations into the factors favouring formation of 3P or 4P species are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.