Life Cycle Assessment (LCA) has become an increasingly common approach across different industries, including agriculture, for environmental impact assessment. A single-issue LCA focusing on greenhouse gas emissions was conducted to determine the emissions profile and total carbon footprint of wheat produced in the Central Zone (East) of New South Wales. Greenhouse gas emissions (in carbon dioxide equivalents; CO2-e) from all stages of the production process, both pre-farm and on-farm, were included. Total emissions were found to be 200 kg CO2-e per t of wheat at the farm gate, based on a 3.5 t/ha grain yield. The relative contribution of greenhouse gas emissions from different components of the production system was determined, with most emissions (37%) coming from pre-farm production and transport of fertiliser (30%) and lime (7%) and from the nitrous oxide (N2O) emitted from the nitrogenous fertiliser applied to the crop (26%). Other important emissions included the CO2 emissions from the use of fertiliser and lime (15%) and the production, transport and use of diesel (16%). The relative importance of other minor emissions is also discussed. For a higher yielding crop (5.0 t/ha), total emissions were found to be 150 kg CO2-e per t of wheat. This paper considers the effect of different management scenarios on the emissions profile and the effect of adopting a N2O emissions factor, which is based on current New South Wales field research, rather than the current Australian National Greenhouse Accounts National Inventory Report default value. This LCA provides a template from which comparative farming systems LCA can be developed and provides data for the Australian Life Cycle Inventory.
The use of Life Cycle Assessment (LCA) to determine environmental impacts of agricultural production, as well as production by other industry sectors has increased. LCA provides an internationally accepted method to underpin labelling and marketing of agricultural products, a valuable tool to compare emissions reduction strategies and a means to identify perverse policy outcomes. A single-issue LCA focussing on greenhouse gas emissions was conducted to determine the emissions profile and carbon footprint of 19-micron wool produced in the Yass Region on the Southern Tablelands of New South Wales. Greenhouse gas emissions (in carbon dioxide equivalents; CO2-e) from the production of all enterprise inputs and from the production of wool on-farm were included. Total emissions were found to be 24.9 kg CO2-e per kg of greasy wool at the farm gate, based on a 4941 breeding ewe enterprise on 1000 ha, with a total greasy wool yield of 65.32 t per annum. The co-products included 174 t sheep meat as liveweight from wethers and cull ewes plus 978 maiden ewes sold off-farm as replacement stock. Total emissions from all products grown on 1000 ha were 2899 t CO2-e per annum.
The relative contribution of greenhouse gas emissions from different components of the production system was determined. Direct emission of methane on-farm (86% of total) was the dominant emission, followed by nitrous oxide emitted from animal wastes directly (5%) and indirectly (5%), and decomposition of pasture residue (1%). Only 2% of total emissions were embodied in farm inputs, including fertiliser.
The emissions profile varied according to calculation method and assumptions. Enteric methane production was calculated using five recognised methods and results were found to vary by 27%. This study also showed that calculated emissions for wool production changed substantially, under an economic allocation method, by changing the enterprise emphasis from wool to meat production (41% decrease) and by changing wool price (29% variability), fibre diameter (23% variability) and fleece weight (11% variability). This paper provides data specific to the Yass Region and addresses broader methodological issues, to ensure that future livestock emissions calculations are robust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.