Progenitor Biological Bandages (PBB) have been continuously applied clinically in the Lausanne Burn Center for over two decades. Vast translational experience and hindsight have been gathered, specifically for cutaneous healing promotion of donor-site grafts and second-degree pediatric burns. PBBs constitute combined Advanced Therapy Medicinal Products, containing viable cultured allogeneic fetal dermal progenitor fibroblasts. Such constructs may partly favor repair and regeneration of functional cutaneous tissues by releasing cytokines and growth factors, potentially negating the need for subsequent skin grafting, while reducing the formation of hypertrophic scar tissues. This retrospective case-control study (2010–2018) of pediatric second-degree burn patients comprehensively compared two initial wound treatment options (i.e., PBBs versus Aquacel® Ag, applied during ten to twelve days post-trauma). Results confirmed clinical safety of PBBs with regard to morbidity, mortality, and overall complications. No difference was detected between groups for length of hospitalization or initial relative burn surface decreasing rates. Nevertheless, a trend was observed in younger patients treated with PBBs, requiring fewer corrective interventions or subsequent skin grafting. Importantly, significant improvements were observed in the PBB group regarding hypertrophic scarring (i.e., reduced number of scar complications and related corrective interventions). Such results establish evidence of clinical benefits yielded by the Swiss fetal progenitor cell transplantation program and favor further implementation of specific cell therapies in highly specialized regenerative medicine.
The complex management of severe burn victims requires an integrative collaboration of multidisciplinary specialists in order to ensure quality and excellence in healthcare. This multidisciplinary care has quickly led to the integration of cell therapies in clinical care of burn patients. Specific advances in cellular therapy together with medical care have allowed for rapid treatment, shorter residence in hospitals and intensive care units, shorter durations of mechanical ventilation, lower complications and surgery interventions, and decreasing mortality rates. However, naturally fluctuating patient admission rates increase pressure towards optimized resource utilization. Besides, European translational developments of cellular therapies currently face potentially jeopardizing challenges on the policy front. The aim of the present work is to provide key considerations in burn care with focus on architectural and organizational aspects of burn centers, management of cellular therapy products, and guidelines in evolving restrictive regulations relative to standardized cell therapies. Thus, based on our experience, we present herein integrated management of risks and costs for preserving and optimizing clinical care and cellular therapies for patients in dire need.
Tendon defects require multimodal therapeutic management over extensive periods and incur high collateral burden with frequent functional losses. Specific cell therapies have recently been developed in parallel to surgical techniques for managing acute and degenerative tendon tissue affections, to optimally stimulate resurgence of structure and function. Cultured primary human fetal progenitor tenocytes (hFPT) have been preliminarily considered for allogeneic homologous cell therapies, and have been characterized as stable, consistent, and sustainable cell sources in vitro. Herein, optimized therapeutic cell sourcing from a single organ donation, industrial transposition of multi-tiered progenitor cell banking, and preliminary preclinical safety of an established hFPT cell source (i.e., FE002-Ten cell type) were investigated. Results underlined high robustness of FE002-Ten hFPTs and suitability for sustainable manufacturing upscaling within optimized biobanking workflows. Absence of toxicity or tumorigenicity of hFPTs was demonstrated in ovo and in vitro, respectively. Furthermore, a 6-week pilot good laboratory practice (GLP) safety study using a rabbit patellar tendon partial-thickness defect model preliminarily confirmed preclinical safety of hFPT-based standardized transplants, wherein no immune reactions, product rejection, or tumour formation were observed. Such results strengthen the rationale of the multimodal Swiss fetal progenitor cell transplantation program and prompt further investigation around such cell sources in preclinical and clinical settings for musculoskeletal regenerative medicine.
a b s t r a c tMechanical stimulation has been proposed to induce chondrogenesis in cell-seeded scaffolds. However, the effects of mechanical stimuli on engineered cartilage may vary substantially between different scaffolds. This advocates for the need to identify an overarching mechanobiological variable. We hypothesize that energy dissipation of scaffolds subjected to dynamic loading may be used as a mechanobiology variable. The energy dissipation would furnish a general criterion to adjust the mechanical stimulation favoring chondrogenesis in scaffold. Epiphyseal chondro-progenitor cells were then subject to unconfined compression 2 h per day during four days in different scaffolds, which differ only by the level of dissipation they generated while keeping the same loading conditions. Scaffolds with higher dissipation levels upregulated the mRNA of chondrogenic markers. In contrast lower dissipation of scaffolds was associated with downregulation of chondrogenic markers. These results showed that energy dissipation could be considered as a mechanobiology variable in cartilage. This study also indicated that scaffolds with energy dissipation level close to the one of cartilage favors chondrogenic expression when dynamical loading is present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.