Sound field reproduction finds applications in music or audio reproduction and experimental acoustics. For audio applications, sound field reproduction can be used to artificially reproduce the spatial character of natural hearing. The general objective is then to reproduce a sound field in a real reproduction environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. For classical WFS, the room response thus reduces the quality of the physical sound field reproduction. In this paper, adaptive wave field synthesis (AWFS) is analytically investigated as an adaptive sound field reproduction system combining WFS and active control with a limited number of reproduction error sensors to compensate the response of the listening environment. The primary point of this paper is the definition of AWFS. Therefore, the fundamental behavior of AWFS is illustrated by analytical considerations and simple free-field simulation results. As demonstrated, AWFS is fundamentally related to WFS and “Ambisonics.” The paper introduces independent adaptive control of sound field reproduction on the basis of radiation modes, via the singular value decomposition of the transfer impedance matrix. Possible practical independent control of radiation modes for AWFS is discussed.
This paper describes the simulations and results obtained when applying optimal control to progressive sound-field reproduction (mainly for audio applications) over an area using multiple monopole loudspeakers. The model simulates a reproduction system that operates either in free field or in a closed space approaching a typical listening room, and is based on optimal control in the frequency domain. This rather simple approach is chosen for the purpose of physical investigation, especially in terms of sensing microphones and reproduction loudspeakers configurations. Other issues of interest concern the comparison with wave-field synthesis and the control mechanisms. The results suggest that in-room reproduction of sound field using active control can be achieved with a residual normalized squared error significantly lower than open-loop wave-field synthesis in the same situation. Active reproduction techniques have the advantage of automatically compensating for the room's natural dynamics. For the considered cases, the simulations show that optimal control results are not sensitive (in terms of reproduction error) to wall absorption in the reproduction room. A special surrounding configuration of sensors is introduced for a sensor-free listening area in free field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.