Reported predictions of human in vivo hepatic clearance from in vitro data have used a variety of values for the scaling factors human microsomal protein (MPPGL) and hepatocellularity (HPGL) per gram of liver, generally with no consideration of the extent of their inter-individual variability. We have collated and analysed data from a number of sources, to provide weighted meangeo values of human MPPGL and HPGL of 32 mg g-1 (95% Confidence Interval (CI); 29-34 mg.g-1) and 99x10(6) cells.g-1 (95% CI; 74-131 mg.g-1), respectively. Although inter-individual variability in values of MPPGL and HPGL was statistically significant, gender, smoking or alcohol consumption could not be detected as significant covariates by multiple linear regression. However, there was a weak but statistically significant inverse relationship between age and both MPPGL and HPGL. These findings indicate the importance of considering differences between study populations when forecasting in vivo pharmacokinetic behaviour. Typical clinical pharmacology studies, particularly in early drug development, use young, fit, healthy male subjects of around 30 years of age. In contrast, the average age of patients for many diseases is about 60 years of age. The relationship between age and MPPGL observed in this study estimates values of 40 mg.g-1 for a 30 year old individual and 31 mg.g-1 for a 60 year old individual. Investigators may wish to consider the reported covariates in the selection of scaling factors appropriate for the population in which estimates of clearance are being predicted. Further studies are required to clarify the influence of age (especially in paediatric subjects), donor source and ethnicity on values of MPPGL and HPGL. In the meantime, we recommend that the estimates (and their variances) from the current meta-analysis be used when predicting in vivo kinetic parameters from in vitro data.
Retrospective studies have demonstrated that patients who are expressors of cytochrome P4503A5 (CYP3A5) require a higher tacrolimus dose to achieve a therapeutic trough concentration (C(0)). The aim of this study was to evaluate this effect prospectively by pretransplantation adaptation. We randomly assigned 280 renal transplant recipients to receive tacrolimus either according to CYP3A5 genotype or according to the standard daily regimen. The primary end point was the proportion of patients within the targeted C(0). Secondary end points included the number of dose modifications and the delay in achieving the targeted C(0). In the group receiving the adapted dose, a higher proportion of patients had values within the targeted C(0) at day 3 after initiation of tacrolimus (43.2% vs. 29.1%; P = 0.03); they required fewer dose modifications, and the targeted C(0) was achieved by 75% of these patients more rapidly. The clinical end points were similar in the two groups. Pharmacogenetic adaptation of the daily dose of tacrolimus is associated with improved achievement of the target C(0). Whether this improvement will affect clinical outcomes requires further evaluation.
The aim of the study is to explore the contribution of genetic factors related either to drug metabolism (cytochrome P450 2C9) or to drug target (vitamin K epoxide reductase) to variability in the response to acenocoumarol among 222 healthy volunteers after a single oral dose. Associations between a pharmacodynamic index (reduction in factor VII activity and international normalized ratio [INR] change) and several genetic polymorphisms (VKORC1: ؊4931T>C, ؊4451C>A, ؊2659G>C, ؊1877A>G, ؊1639G>A, 497C>G, 1173C>T, and CYP2C9*3) were investigated using haplotype and univariate analyses. VKORC1 haplotypes were associated with the pharmacologic response, and this association can be explained only by the effect of the ؊1639G>A polymorphism (or alternatively by 1173C>T, which is in complete association with it). Indeed, it explains about one third of the variability of the pharmacologic response (37% of factor VII decrease and 30% of INR change). Moreover, the previously observed effect of the CYP2C9*3 allele is independent of the VKORC1 gene effect. These 2 polymorphisms account for up to 50% of the interindividual variability. The simple genotyping of 2 single-nucleotide polymorphisms (SNPs), VKORC1 ؊1639G>A or 1173C>T and the CYP2C9*3 polymorphisms, could thus predict a high risk of overdose before initiation of anticoagulation with acenocoumarol, and provide a safer and more individualized anticoagulant therapy. (Blood. 2005;106:135-140)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.