Efficient use of whole slide imaging in pathology needs automated region of interest (ROI) retrieval and classification, through the use of image analysis and data sorting tools. One possible method for data sorting uses Spectral Analysis for Dimensionality Reduction. We present some interesting results in the field of histopathology and cytohematology.In histopathology, we developed a Computer-Aided Diagnosis system applied to low-resolution images representing the totality of histological breast tumour sections. The images can be digitized directly at low resolution or be obtained from sub-sampled high-resolution virtual slides. Spectral Analysis is used (1) for image segmentation (stroma, tumour epithelium), by determining a «distance» between all the images of the database, (2) for choosing representative images and characteristic patterns of each histological type in order to index them, and (3) for visualizing images or features similar to a sample provided by the pathologist.In cytohematology, we studied a blood smear virtual slide acquired through high resolution oil scanning and Spectral Analysis is used to sort selected nucleated blood cell classes so that the pathologist may easily focus on specific classes whose morphology could then be studied more carefully or which can be analyzed through complementary instruments, like Multispectral Imaging or Raman MicroSpectroscopy.
An original strategy is presented, combining stereological sampling methods based on test grids and data reduction methods based on diffusion maps, in order to build a knowledge image database with no bias introduced by a subjective choice of exploration areas. The practical application of the exposed methodology concerns virtual slides of breast tumors.
Segmentation of medical images is a complex problem owing to the large variety of their characteristics. In the automated analysis of breast cancers, two image classes may be distinguished according to whether one considers the quantification of DNA (grey level images of isolated nuclei) or the detection of immunohistochemical staining (colour images of histological sections). The study of these image classes generally involves the use of largely different image processing techniques. We therefore propose a new algorithm derived from the watershed transformation enabling us to solve these two segmentation problems with the same general approach. We then present visual and quantitative results to validate our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.