[1] To calculate bed load, engineers often use flow resistance equations that provide estimates of bed shear stress. In these equations, on the basis of the estimate of the appropriate hydraulic radius associated with the bed only, the bed roughness k s is commonly set as a constant, whatever the bed load intensity. However, several studies have confirmed the existence of feedback mechanisms between flow resistance and bed load, suggesting that a flow-dependent bed roughness should be used. Therefore, using a data set composed of 2282 flume and field experimental values, this study investigated the importance of these feedback effects. New flow resistance equations were proposed for three flow domains: domain 1 corresponds to no bed load and a constant bed roughness k s = D (where D is a representative grain diameter), whereas domain 3 corresponds to a high bed load transport rate over a flat bed with a constant bed roughness k s = 2.6D. Between these two domains, a transitional domain 2 was identified, for which the bed roughness evolved from D to 2.6D with increasing flow conditions. In this domain, the Darcy-Weisbach resistance coefficient f can be approximated using a constant for a given slope. The results using this new flow resistance equation proved to be more accurate than those using equations obtained from simple fittings of logarithmic laws to mean values. The data set indicates that distinguishing domains 2 and 3 is still relevant for bed load. In particular, the data indicate a slope dependence in domain 2 but not in domain 3. A bed load model, based on the tractive force concept, is proposed. Finally, flow resistance and bed load equations were used together to calculate both shear stress and bed load from the flow discharge, the slope, and the grain diameter for each run of the data set. Efficiency tests indicate that new equations (implicitly taking a feedback mechanism into account) can reduce the error by a factor of 2 when compared to other equations currently in use, showing that feedback between flow resistance and bed load can improve field bed load modeling.Citation: Recking, A., P. Frey, A. Paquier, P. Belleudy, and J. Y. Champagne (2008), Feedback between bed load transport and flow resistance in gravel and cobble bed rivers, Water Resour. Res., 44, W05412,
Despite the drought observed since 1968 in most of the West African Sahel, runoff and rivers discharges have been increasing in the same region. This trend is related with land use change rather than climate change. This paper aims to describe the regional extension of such a phenomenon and to demonstrate that the increase in runoff is observed from the point scale up to the regional scale. It highlights the opposition of functioning between a Sahelian zone, where the Sahel's paradox applies, and the Sudanian and Guinean areas, where runoff has been logically decreasing with the rainfall. The current OPEN ACCESSWater 2010, 2 171 trend is evidenced using experimental runoff plots and discharge data from the local to the regional scales.
[1] Field measurements indicate that, in gravel bed rivers, bed load may not be a one-toone response to shear stress but may instead fluctuate a great deal over time for a given flow condition. Both in flume and field experiments, these fluctuations were often associated with migration of low-relief bed forms called bed load sheets. Whereas several studies have described bed load sheets as a consequence of grain sorting, little is known about the mechanisms responsible for their production and migration. These were investigated in flume experiments. A set of 20 experiments was conducted under constant feeding rate conditions, with mixtures of different uniform sediments and for slopes varying from 0.8 to 9%. Except for runs performed in high flow conditions, we observed periodic bed load sheet production and migration associated with fluctuations of bed slope, bed state (bed fining and paving), and bed load. Observations allowed us to conclude that bed load sheets resulted from very efficient vertical and longitudinal grain sorting that produced periodic local bed aggradation and erosion clearly observed in the upstream section of the flume. Fractional transport rates were measured in one run. Combined with the results of experiments previously conducted by authors with uniform sediments, this experiment showed that the highest (peak) solid discharges were essentially caused by the much greater mobility of the coarser gravels when transported within bed load sheets. A scenario is proposed for the mechanisms involved in bed load sheet production and migration.Citation: Recking, A., P. Frey, A. Paquier, and P. Belleudy (2009), An experimental investigation of mechanisms involved in bed load sheet production and migration,
International audienceHigh-frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall-snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1-h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l-1 were observed. Annual specific fluxes ranged from 450 to 800 t km-2 year-1 and 40-80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter-annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro-meteorological processes on the watershed provides a better understanding of suspended sediment dynamics
Surrogate technologies to monitor bed load discharge have been developed to supplement and ultimately take over traditional direct methods. Our research deals with passive acoustic monitoring of bed load flux using a hydrophone continuously deployed near a river bed. This passive acoustic technology senses any acoustic waves propagated in the river environment and particularly the sound due to interparticle collisions emitted during bed load movement. A data set has been acquired in the large Alpine gravel‐bedded Drau River. Analysis of the short‐term frequency response of acoustic signals allows us to determine the origin of recorded noises and to consider their frequency variations. Results are compared with ancillary field data of water depth and bed load transport inferred from the signals of a geophone array. Hydrophone and geophone signals are well correlated. Thanks to the large network of deployed geophones, analysis of the spatial resolution of hydrophone measurements shows that the sensor is sensitive to bed load motion not only locally but over distances of 5–10 m (10–20% of river width). Our results are promising in terms of the potential use of hydrophones for monitoring bed load transport in large gravel bed rivers: acoustic signals represent a large river bed area, rather than being local; hydrophones can be installed in large floods; they can be deployed at a low cost and provide continuous monitoring at high temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.