We present a complete design pipeline that allows non-expert users to design and analyze masonry structures without any structural knowledge. We optimize the force layouts both geometrically and topologically, finding a self-supported structure that is as close as possible to a given target surface. The generated structures are tessellated into hexagonal blocks with a pattern that prevents sliding failure. The models can be used in physically plausible virtual environments or 3D printed and assembled without reinforcements.
The concept of casting concrete in fabrics, fabric formwork technology, has resurfaced at various times and in different forms throughout the past century. The following paper traces developments that have used fabrics for concrete formwork, including different types of flexible formwork, controlled permeability formwork and pneumatic formwork. This paper presents a comprehensive historical overview of fabric formwork, listing key innovators, technological developments and their advantages, and offering examples of structures built with these methods. The information gathered is used to present a taxonomy of these related formwork technologies as well as a formal definition of the term “fabric formwork” that encompasses them. The paper is intended to introduce readers to these technologies and offer readers already familiar with these methods additional historical background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.