In 1958, P.W. Anderson predicted the exponential localization 1 of electronic wave functions in disordered crystals and the resulting absence of diffusion. It has been realized later that Anderson localization (AL) is ubiquitous in wave physics 2 as it originates from the interference between multiple scattering paths, and this has prompted an intense activity. Experimentally, localization has been reported in light waves 3,4,5,6,7 , microwaves 8,9 , sound waves 10 , and electron 11 gases but to our knowledge there is no direct observation of exponential spatial localization of matter-waves (electrons or others). Here, we report the observation of exponential localization of a Bose-Einstein condensate (BEC) released into a one-dimensional waveguide in the presence of a controlled disorder created by laser speckle 12 . We operate in a regime allowing AL: i) weak disorder such that localization results from many quantum reflections of small amplitude; ii) atomic density small enough that interactions are negligible. We image directly the atomic density profiles vs time, and find that weak disorder can lead to the stopping of the expansion and to the formation of a stationary exponentially localized wave function, a direct signature of AL. Fitting the exponential wings, we extract the localization length, and compare it to theoretical calculations. Moreover we show that, in our one-dimensional speckle potentials whose noise spectrum has a high spatial frequency cut-off, exponential localization occurs only when the de Broglie wavelengths of the atoms in the expanding BEC are larger than an effective mobility edge corresponding to that cut-off. In the opposite case, we find that the density profiles decay algebraically, as predicted in ref 13. The method presented here can be extended to localization of atomic quantum gases in higher dimensions, and with controlled interactions.
We report the demonstration of a Sagnac-effect atom interferometer gyroscope which uses stimulated Raman transitions to coherently manipulate atomic wave packets. We have measured the Earth's rotation rate, and demonstrated a short-term sensitivity to rotations of 2 3 10 28 ͑rad͞s͒͞ p Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.