International audienceCorrosion induced by chloride ions has become a critical issue for many reinforced concrete structures. The chloride ingress into concrete has been usually simplified as a diffusion problem where the chloride concentration throughout concrete is estimated analytically. However, this simplified approach has several limitations. For instance, it does not consider chloride ingress by convection which is essential to model chloride penetration in unsaturated conditions as spray and tidal areas. This paper presents a comprehensive model of chloride penetration where the governing equations are solved by coupling finite element and finite difference methods. The uncertainties related to the problem are also considered by using random variables to represent the model's parameters and the materials' properties, and stochastic processes to model environmental actions. Furthermore, this approach accounts for: (1) chloride binding capacity; (2) time-variant nature of temperature, humidity and surface chloride concentration; (3) concrete aging; and (4) chloride flow in unsaturated conditions. The proposed approach is illustrated by a numerical example where the factors controlling chloride ingress and the effect of weather conditions were studied. The results stress the importance of including the influence of the random nature of environmental actions, chloride binding, convection and two-dimensional chloride ingress for a comprehensive lifetime assessment
a b s t r a c tReinforced concrete (RC) structures are subjected to environmental actions affecting their performance, serviceability and safety. Among these actions, chloride ingress leads to corrosion and has been recognized as a critical factor reducing service life of RC structures. This paper presents a stochastic approach to study the influence of weather conditions and global warming on chloride ingress into concrete. The assessment of chloride ingress is carried out on the basis of a comprehensive model that couples the effects of convection, chloride binding, concrete aging, temperature and humidity. A simplified model of temperature and humidity including seasonal variations and global warming is also proposed in this work. Three scenarios of global warming are defined based on: gas emissions, global population growth, introduction of new and clean technologies and use of fossil sources of energy. The proposed approach is illustrated by a numerical example where the preliminary results indicate that climate changes may yield to significant lifetime reductions.
Structural deterioration is becoming a major problem when considering long term performance of infrastructures. The existence of a corrosive environment, cyclic loading and concrete cracking cause structural strength degradation. The interaction of these conditions can only be taken into account when modeling the coupled action. In this paper, a new model to assess lifetime of RC structures subject to corrosion-fatigue deterioration processes, is proposed. Separately, corrosion leads to cross section reduction while fatigue induces the nucleation and the propagation of cracks in steel bars. When considered together, pitting corrosion nucleates the crack while environmental factors affect the kinematics of crack propagation. The model is applied to the reliability analysis of bridge girders located in different chloride-contaminated environments. Overall results show that the coupled effect of corrosion-fatigue on RC structures affects strongly its performance leading to large reduction in the expected lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.