We have translated fractional Brownian motion (FBM) signals into a text based on two "letters", as if the signal fluctuations correspond to a constant stepsize random walk. We have applied the Zipf method to extract the ζ ′ exponent relating the word frequency and its rank on a loglog plot. We have studied the variation of the Zipf exponent(s) giving the relationship between the frequency of occurrence of words of length m < 8 made of such two letters: ζ ′ is varying as a power law in terms of m. We have also searched how the ζ ′ exponent of the Zipf law is influenced by a linear trend and the resulting effect of its slope. We can distinguish finite size effects, and results depending whether the starting FBM is persistent or not, i.e. depending on the FBM Hurst exponent H. It seems then numerically proven that the Zipf exponent of a persistent signal is more influenced by the trend than that of an antipersistent signal. It appears that the conjectured law ζ ′ = |2H − 1| only holds near H = 0.5. We have also introduced considerations based on the notion of a time dependent Zipf law along the signal.
We recall the historically admitted prerequisites of Economic Freedom (EF). We have examined 908 data points for the Economic Freedom of the World (EFW) index and 1884 points for the Index of Economic Freedom (IEF); the studied periods are 2000–2006 and 1997–2007, respectively, thereby following the Berlin wall collapse, and including 11 September 2001. After discussing EFW index and IEF, in order to compare the indices, one needs to study their overlap in time and space. That leaves 138 countries to be examined over a period extending from 2000 to 2006, thus 2 sets of 862 data points. The data analysis pertains to the rank-size law technique. It is examined whether the distributions obey an exponential or a power law. A correlation with the country’s Gross Domestic Product (GDP), an admittedly major determinant of EF, follows, distinguishing regional aspects, i.e., defining 6 continents. Semi-log plots show that the EFW-rank relationship is exponential for countries of high rank (≥20); overall the log–log plots point to a behaviour close to a power law. In contrast, for the IEF, the overall ranking has an exponential behaviour; but the log–log plots point to the existence of a transitional point between two different power laws, i.e., near rank 10. Moreover, log–log plots of the EFW index relationship to country GDP are characterised by a power law, with a rather stable exponent (γ≃0.674) as a function of time. In contrast, log–log plots of the IEF relationship with the country’s gross domestic product point to a downward evolutive power law as a function of time. Markedly the two studied indices provide different aspects of EF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.