This article reviews developments towards assimilating cloud‐ and precipitation‐ affected satellite radiances at operational forecasting centres. Satellite data assimilation is moving beyond the “clear‐sky” approach that discards any observations affected by cloud. Some centres already assimilate cloud‐ and precipitation‐affected radiances operationally and the most popular approach is known as “all‐sky,” which assimilates all observations directly as radiances, whether they are clear, cloudy or precipitating, using models (for both radiative transfer and forecasting) that are capable of simulating cloud and precipitation with sufficient accuracy. Other frameworks are being tried, including the assimilation of humidity retrieved from cloudy observations using Bayesian techniques. Although the all‐sky technique is now proven for assimilation of microwave radiances, it has yet to be demonstrated operationally for infrared radiances, though several centres are getting close. Assimilating frequently available all‐sky infrared observations from geostationary satellites could give particular benefit for short‐range forecasting. More generally, assimilating cloud‐ and precipitation‐affected satellite observations improves forecasts in the medium range globally and can also improve the analysis and shorter‐range forecasting of otherwise poorly observed weather phenomena as diverse as tropical cyclones and wintertime low cloud.
Ten years ago, humidity observations were thought to give little benefit to global weather forecasts. Nowadays, at the European Centre for Medium‐range Weather Forecasts, satellite microwave radiances sensitive to humidity, cloud and precipitation provide 20% of short‐range forecast impact, as measured by adjoint‐based forecast sensitivity diagnostics. This makes them one of the most important sources of data and equivalent in impact to microwave temperature sounding observations. Forecasts of dynamical quantities, and precipitation, are improved out to at least day 6. This article reviews the impact of and the science behind these data. It is not straightforward to assimilate cloud and precipitation‐affected observations when the intrinsic predictability of cloud and precipitation features is limited. Assimilation systems must be able to operate in the presence of all‐pervasive cloud and precipitation ‘mislocation’ errors. However, by assimilating these observations using the ‘all‐sky’ approach, and supported by advances in data assimilation and forecast modelling, modern data assimilation systems can infer the dynamical state of the atmosphere, not just from traditional temperature‐related observations, but from observations of humidity, cloud and precipitation.
Monsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteorological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data are computed using dedicated techniques that come down to an estimation of the sampling errors associated to these measurements. The results show that the new generation of combined infrared–microwave (IR–MW) satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.