International audienceThe Mediterranean region is frequently affected by heavy precipitation events associated with flash floods, landslides, and mudslides that cause hundreds of millions of euros in damages per year and often, casualties. A major field campaign was devoted to heavy precipitation and flash floods from 5 September to 6 November 2012 within the framework of the 10-year international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. The 2- month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The observation strategy of the field experiment was devised to improve our knowledge on the following key components leading to heavy precipitation and flash flooding in the region: i) the marine atmospheric flows that transport moist and conditionally unstable air towards the coasts; ii) the Mediterranean Sea acting as a moisture and energy source; iii) the dynamics and microphysics of the convective systems producing heavy precipitation; iv) the hydrological processes during flash floods. This article provides the rationale for developing this first HyMeX field experiment and an overview of its design and execution. Highlights of some Intense Observation Periods illustrate the potential of the unique datasets collected for process understanding, model improvement and data assimilation
The stratospheric gravity wave field in the Southern Hemisphere is investigated by analyzing observations collected by 27 long-duration balloons that flew between September 2005 and February 2006 over Antarctica and the Southern Ocean. The analysis is based on the methods introduced by Boccara et al. in a companion paper. Special attention is given to deriving information useful to gravity wave drag parameterizations employed in atmospheric general circulation models. The balloon dataset is used to map the geographic variability of gravity wave momentum fluxes in the lower stratosphere. This flux distribution is found to be very heterogeneous with the largest time-averaged value (28 mPa) observed above the Antarctic Peninsula. This value exceeds by a factor of ϳ10 the overall mean momentum flux measured during the balloon campaign. Zonal momentum fluxes were predominantly westward, whereas meridional momentum fluxes were equally northward and southward. A local enhancement of southward flux is nevertheless observed above Adélie Land and is attributed to waves generated by katabatic winds, for which the signature is otherwise rather small in the balloon observations. When zonal averages are performed, oceanic momentum fluxes are found to be of similar magnitude to continental values (2.5-3 mPa), stressing the importance of nonorographic gravity waves over oceans. Last, gravity wave intermittency is investigated. Mountain waves appear to be significantly more sporadic than waves observed above the ocean.
International audienceThe Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: 1. To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. 2. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed. A major Concordiasi component is a field experiment during the austral springs of 2008-10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release drop-sondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station
In September and October 2005, the Stratéole/Vorcore campaign flew 27 superpressure balloons from McMurdo, Antarctica, into the stratospheric polar vortex. Long-duration flights were successfully achieved, 16 of those flights lasting for more than 2 months. Most flights were terminated because they flew out of the authorized flight domain or because of energy shortage in the gondola. The atmospheric pressure (1-Pa precision) was measured every minute during the flights, whereas air temperature observations (0.25-K accuracy) and balloon positions (absolute GPS observations, 10-m accuracy) were obtained every 15 min. Fifteen-minute-averaged horizontal velocities of the wind were deduced from the successive balloon positions with a corresponding accuracy Շ0.1 m s Ϫ1 . The collected dataset (more than 150 000 independent observations) provides a thorough high-resolution sampling of the polar lower stratosphere in the Southern Hemisphere from its wintertime state up to the establishment of the summer circulation in December-January. Most of the balloons stayed inside the vortex until its final breakdown, although a few were ejected toward the midlatitudes in November during filamention events associated with an increase in planetary wave activity. The balloons behaved as quasi-Lagrangian tracers during the first part of the campaign (quiescent vortex) and after the vortex breakdown in early December. Large-amplitude mountain gravity waves were detected over the Antarctic Peninsula and caused one flight termination associated with the sudden burst in the balloon superpressure.
In March 2001, three superpressure balloons were launched from Kiruna, Sweden (67.9°N, 21.1°E). The balloons drifted for several weeks in the stratospheric polar vortex at about 19 km. The corresponding trajectories exhibit cycloid‐like patterns due to the presence of near‐inertial waves. Consistently, it is found that the intrinsic‐frequency spectra of the horizontal velocity components are enhanced around the inertial frequency in reference to the generally assumed power‐law distribution. A large spectral gap is also found between gravity waves and Rossby waves in the polar stratosphere, in contrast to the continuum found in the equatorial lower stratosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.