Human skin reconstructs are three-dimensional in vitro models consisting of epidermal keratinocytes plated onto fibroblast-contracted collagen gels. Cells in skin reconstructs more closely recapitulate the in situ phenotype than do cells in monolayer culture. Normal melanocytes in skin reconstructs remained singly distributed at the basement membrane which separated the epidermis from the dermis. Cell lines derived from biologically early primary melanomas of the radial growth phase proliferated in the epidermis and the basement membrane was left intact. Growth and migration of the radial growth phase melanoma cells in the dermal reconstruct and tumorigenicity in vivo were only observed when cells were transduced with the basic fibroblast growth factor gene, a major autocrine growth stimulator for melanomas. Primary melanoma cell lines representing the more advanced stage vertical growth phase invaded the dermis in reconstructs and only an irregular basement membrane was formed. Metastatic melanoma cells rapidly proliferated and aggressively invaded deep into the dermis, with each cell line showing typical invasion and growth characteristics. Our results demonstrate that the growth patterns of melanoma cells in skin reconstructs closely correspond to those in situ and that basic fibroblast growth factor is critical for progression.
The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.