Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO) bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler radar signal processing chain. This model provides low latency, but communication inefficiency limits system performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental results show that the parallel efficiency of the proposed parallel machine is about 90%.
The fast Fourier transform (FFT) is perhaps today's most ubiquitous algorithm used with digital data; hence, it is still being studied extensively. Besides the benefit of reducing the arithmetic count in the FFT algorithm, memory references and scheme's projection on processor's architecture are critical for a fast and efficient implementation. One of the main bottlenecks is in the long latency memory accesses to butterflies' legs and in the redundant references to twiddle factors. In this paper, we describe a new FFT implementation on high-end very long instruction word (VLIW) digital signal processors (DSP), which presents improved performance in terms of clock cycles due to the resulting low-level resource balance and to the reduced memory accesses of twiddle factors. The method introduces a tradeoff parameter between accuracy and speed. Additionally, we suggest a cache-efficient implementation methodology for the FFT, dependently on the provided VLIW hardware resources and cache structure. Experimental results on a TI VLIW DSP show that our method reduces the number of clock cycles by an average of 51 % (2 times acceleration) when compared to the most assembly-optimized and vendor-tuned FFT libraries. The FFT was generated using an instruction-level scheduling heuristic. It is a modulo-based register-sensitive scheduling algorithm, which is able to compute an aggressively efficient sequence of VLIW instructions for the FFT, maximizing the parallelism rate and minimizing clock cycles and register usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.