Retroviruses contain a dimeric RNA consisting of two identical molecules of genomic RNA. The interaction between the two monomers is thought to occur near their 5'ends. We previously identified a region upstream from the splice donor site, comprising an autocomplementary sequence, responsible for the formation of dimeric HIV-1Lai RNA [Muriaux, D., Girard, P.-M., Bonnet-Mathonire, B., & Paoletti, J.(1995) J. Biol. Chem. 270,8209-8216]. This region appeared to be confined within a putative stem-loop structure. Here we report an in vitro model under conditions of low inioc strength. Two dimers of RNA 77-402 were identified as a function of temperature, and a significant difference was found in their thermostability. Dimer D55, formed at 55 degrees Celsius, is more stable than dimer D37, formed at 37 degrees C. RNase probing experiments confirm the involvement of a stem-loop structure in the dimerization process. In the monomer, the free G257-CGCGC262 sequence forms a loop in the 240-280 region of RNA 77-402, whereas this sequence is engaged in base pairing when D55 and D37 dimers are formed. Our results show that the loop-loop interaction of the autocomplementary G257CGCGC262 sequence, though hydrogen bonding, is responsible for the formation of dimer D37 and strongly suggest that D37 is a "kissing" complex. In contrast, in dimer D55, all the nucleotides of the two hairpin stems, 243-254/264-277, are involved in a complete interstrand interaction.
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.