The main purpose of data mining and analytics is to find novel, potentially useful patterns that can be utilized in real-world applications to derive beneficial knowledge. For identifying and evaluating the usefulness of different kinds of patterns, many techniques/constraints have been proposed, such as support, confidence, sequence order, and utility parameters (e.g., weight, price, profit, quantity, etc.). In recent years, there has been an increasing demand for utility-oriented pattern mining (UPM). UPM is a vital task, with numerous high-impact applications, including cross-marketing, e-commerce, finance, medical, and biomedical applications. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods of UPM. First, we introduce an in-depth understanding of UPM, including concepts, examples, and comparisons with related concepts. A taxonomy of the most common and state-of-the-art approaches for mining different kinds of high-utility patterns is presented, including Apriori-based, tree-based, projection-based, vertical-/horizontal-data-format-based, and other hybrid approaches. A comprehensive review of advanced topics of existing high-utility pattern mining techniques is offered, with a discussion of their pros and cons. Finally, we present several well-known open-source software packages for UPM. We conclude our survey with a discussion on open and practical challenges in this field.
Itemset mining is an important subfield of data mining, which consists of discovering interesting and useful patterns in transaction databases. The traditional task of frequent itemset mining is to discover groups of items (itemsets) that appear frequently together in transactions made by customers. Although itemset mining was designed for market basket analysis, it can be viewed more generally as the task of discovering groups of attribute values frequently cooccurring in databases. Because of its numerous applications in domains such as bioinformatics, text mining, product recommendation, e‐learning, and web click stream analysis, itemset mining has become a popular research area. This study provides an up‐to‐date survey that can serve both as an introduction and as a guide to recent advances and opportunities in the field. The problem of frequent itemset mining and its applications are described. Moreover, main approaches and strategies to solve itemset mining problems are presented, as well as their characteristics are provided. Limitations of traditional frequent itemset mining approaches are also highlighted, and extensions of the task of itemset mining are presented such as high‐utility itemset mining, rare itemset mining, fuzzy itemset mining, and uncertain itemset mining. This study also discusses research opportunities and the relationship to other popular pattern mining problems, such as sequential pattern mining, episode mining, subgraph mining, and association rule mining. Main open‐source libraries of itemset mining implementations are also briefly presented. WIREs Data Mining Knowl Discov 2017, 7:e1207. doi: 10.1002/widm.1207 This article is categorized under: Algorithmic Development > Association Rules Technologies > Association Rules
Sequential rule mining is an important data mining task with wide applications. The current state-of-the-art algorithm (RuleGrowth) for this task relies on a pattern-growth approach to discover sequential rules. A drawback of this approach is that it repeatedly performs a costly database projection operation, which deteriorates performance for datasets containing dense or long sequences. In this paper, we address this issue by proposing an algorithm named ERMiner (Equivalence class based sequential Rule Miner) for mining sequential rules. It relies on the novel idea of searching using equivalence classes of rules having the same antecedent or consequent. Furthermore, it includes a data structure named SCM (Sparse Count Matrix) to prune the search space. An extensive experimental study with five real-life datasets shows that ERMiner is up to five times faster than RuleGrowth but consumes more memory.
The genome of the novel coronavirus (COVID-19) disease was first sequenced in January 2020, approximately a month after its emergence in Wuhan, capital of Hubei province, China. COVID-19 genome sequencing is critical to understanding the virus behavior, its origin, how fast it mutates, and for the development of drugs/vaccines and effective preventive strategies. This paper investigates the use of artificial intelligence techniques to learn interesting information from COVID-19 genome sequences. Sequential pattern mining (SPM) is first applied on a computer-understandable corpus of COVID-19 genome sequences to see if interesting hidden patterns can be found, which reveal frequent patterns of nucleotide bases and their relationships with each other. Second, sequence prediction models are applied to the corpus to evaluate if nucleotide base(s) can be predicted from previous ones. Third, for mutation analysis in genome sequences, an algorithm is designed to find the locations in the genome sequences where the nucleotide bases are changed and to calculate the mutation rate. Obtained results suggest that SPM and mutation analysis techniques can reveal interesting information and patterns in COVID-19 genome sequences to examine the evolution and variations in COVID-19 strains respectively.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.