Early imaging or blood biomarkers of tumor response is needed to customize anti-tumor therapy on an individual basis. This study evaluates the sensitivity and relevance of five potential MRI biomarkers. Sixty nude rats were implanted with human glioma cells (U-87 MG) and randomized into three groups: one group received an anti-angiogenic treatment (Sorafenib), a second a cytotoxic drug [1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU (Carmustine)] and a third no treatment. The tumor volume, apparent diffusion coefficient (ADC) of water, blood volume fraction (BVf), microvessel diameter (vessel size index, VSI) and vessel wall integrity (contrast enhancement, CE) were monitored before and during treatment. Sorafenib reduced tumor CE as early as 1 day after treatment onset. By 4 days after treatment onset, tumor BVf was reduced and tumor VSI was increased. By 14 days after treatment onset, ADC was increased and the tumor growth rate was reduced. With BCNU, ADC was increased and the tumor growth rate was reduced 14 days after treatment onset. Thus, the estimated MRI parameters were sensitive to treatment at different times after treatment onset and in a treatment-dependent manner. This study suggests that multiparametric MR monitoring could allow the assessment of new anti-tumor drugs and the optimization of combined therapies.
In vitro sensitivity of HT29 human colon cancer cells to doxorubicin (DXR), vincristine (VCR), etoposide (VP16), cisplatin (CDDP), melphalan (L-PAM) and 5-fluorouracil (5FU) was markedly reduced when cell-culture density increased. For some drugs, confluence-dependent resistance (CDR) was partly due to decreased intracellular drug accumulation; the ratio of mean intracellular drug content of non confluent to confluent cells (NC/C) was 2.5 for DXR, 4.1 for VCR and 7.4 for VP16. Altered drug penetration with confluence could be related to decrease of plasma membrane fluidity as measured by the fluorescence polarization method. Reduction of drug intracellular accumulation was nil or weak for L-PAM (NC/C = 1.0), CDDP (NC/C = 1.2) and 5 FU (NC/C = 1.8). Even if drug concentration was adjusted in culture medium to produce similar intracellular drug content in confluent and non confluent cells, higher intrinsic resistance of confluent cells was still evidenced for DXR and VP16 but not for VCR, the only agent without direct interaction with DNA. DXR- and VP16-induced DNA breakage was also less important in confluent than in non-confluent cells. CDR appeared closely related to an increased proportion of non-cycling cells at confluence, as demonstrated by flow cytometry, expression of nuclear antigen recognized by Ki67 MAb and expression of topoisomerase II. CDR is probably a major factor in the poor sensitivity of colorectal adenocarcinomas to chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.