On the basis of the sequence of the mitochondrial genome in the flowering plant Arabidopsis thaliana, RNA editing events were systematically investigated in the respective RNA population. A total of 456 C to U, but no U to C, conversions were identified exclusively in mRNAs, 441 in ORFs, 8 in introns, and 7 in leader and trailer sequences. No RNA editing was seen in any of the rRNAs or in several tRNAs investigated for potential mismatch corrections. RNA editing affects individual coding regions with frequencies varying between 0 and 18.9% of the codons. The predominance of RNA editing events in the first two codon positions is not related to translational decoding, because it is not correlated with codon usage. As a general effect, RNA editing increases the hydrophobicity of the coded mitochondrial proteins. Concerning the selection of RNA editing sites, little significant nucleotide preference is observed in their vicinity in comparison to unedited C residues. This sequence bias is, per se, not sufficient to specify individual C nucleotides in the total RNA population in Arabidopsis mitochondria.
The ubiquitous endonuclease RNase P is responsible for the 5' maturation of tRNA precursors. Until the discovery of human mitochondrial RNase P, these enzymes had typically been found to be ribonucleoproteins, the catalytic activity of which is associated with the RNA component. Here we show that, in Arabidopsis thaliana mitochondria and plastids, a single protein called 'proteinaceous RNase P' (PRORP1) can perform the endonucleolytic maturation of tRNA precursors that defines RNase P activity. In addition, PRORP1 is able to cleave tRNA-like structures involved in the maturation of plant mitochondrial mRNAs. Finally, we show that Arabidopsis PRORP1 can replace the bacterial ribonucleoprotein RNase P in Escherichia coli cells. PRORP2 and PRORP3, two paralogs of PRORP1, are both localized in the nucleus.
Mitochondria fulfill a wide range of metabolic functions in addition to the synthesis of ATP and contain a diverse array of proteins to perform these functions. Here, we present the unexpected discovery of the presence of the enzymes of glycolysis in a mitochondrial fraction of Arabidopsis cells. Proteomic analyses of this mitochondrial fraction revealed the presence of 7 of the 10 enzymes that constitute the glycolytic pathway. Four of these enzymes (glyceraldehyde-3-P dehydrogenase, aldolase, phosphoglycerate mutase, and enolase) were also identified in an intermembrane space/outer mitochondrial membrane fraction. Enzyme activity assays confirmed that the entire glycolytic pathway was present in preparations of isolated Arabidopsis mitochondria, and the sensitivity of these activities to protease treatments indicated that the glycolytic enzymes are present on the outside of the mitochondrion. The association of glycolytic enzymes with mitochondria was confirmed in vivo by the expression of enolase-and aldolase-yellow fluorescent protein fusions in Arabidopsis protoplasts. The yellow fluorescent protein fluorescence signal showed that these two fusion proteins are present throughout the cytosol but are also concentrated in punctate regions that colocalized with the mitochondrion-specific probe Mitotracker Red. Furthermore, when supplied with appropriate cofactors, isolated, intact mitochondria were capable of the metabolism of 13 C-glucose to 13 C-labeled intermediates of the trichloroacetic acid cycle, suggesting that the complete glycolytic sequence is present and active in this subcellular fraction. On the basis of these data, we propose that the entire glycolytic pathway is associated with plant mitochondria by attachment to the cytosolic face of the outer mitochondrial membrane and that this microcompartmentation of glycolysis allows pyruvate to be provided directly to the mitochondrion, where it is used as a respiratory substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.