Object recognition is an important task for improving the ability of visual systems to perform complex scene understanding. Recently, the Exponential Linear Unit (ELU) has been proposed as a key component for managing bias shift in Convolutional Neural Networks (CNNs), but defines a parameter that must be set by hand. In this paper, we propose learning a parameterization of ELU in order to learn the proper activation shape at each layer in the CNNs. Our results on the MNIST, CIFAR-10/100 and ImageNet datasets using the NiN, Overfeat, All-CNN and ResNet networks indicate that our proposed Parametric ELU (PELU) has better performances than the non-parametric ELU. We have observed as much as a 7.28% relative error improvement on ImageNet with the NiN network, with only 0.0003% parameter increase. Our visual examination of the non-linear behaviors adopted by Vgg using PELU shows that the network took advantage of the added flexibility by learning different activations at different layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.