The antimalarial properties of Tithonia diversifolia, an Asteraceae traditionally used to treat malaria, were investigated in vitro against three strains of Plasmodium falciparum. The ether extract from aerial parts of the plant collected in São Tomé e Príncipe, demonstrated good antiplasmodial activity (IC 50 on FCA strain: 0.75 microg/ml). A bioassay guided fractionation of this extract led to the isolation of the known sesquiterpene lactone tagitinin C as an active component against Plasmodium (IC 50 on FCA strain: 0.33 microg/ml), but also possessing cytotoxic properties (IC 50 on HTC-116 cells: 0.706 microg/ml).
The in vitro antiplasmodial activities of 69 alkaloids from various Strychnos species were evaluated against chloroquine-resistant and chloroquine-sensitive lines of Plasmodium falciparum. The compounds, comprising mainly indolomonoterpenoid alkaloids, exhibited a wide range of biological potencies in the antiplasmodial assays. The most active alkaloids were also tested for cytotoxicity against HCT-116 colon cancer cells to determine their antiplasmodial selectivity. As a result of these studies, structure-activity relationships for these alkaloids have begun to emerge. Alkaloids presenting four types of bisindole skeleton exhibited potent and selective activities against Plasmodium. They were sungucine-type (IC(50) values ranging from 80 nM to 10 microM), longicaudatine-type (IC(50) values ranging from 0.5 to 10 microM), matopensine-type (IC(50) values ranging from 150 nM to 10 microM), and usambarine-type alkaloids. Within the last structural type, isostrychnopentamine (49) and ochrolifuanine A (46) were found to be active against chloroquine-sensitive and -resistant strains (IC(50) values of 100-150 and 100-500 nM, respectively), and dihydrousambarensine (51) exhibited a 30-fold higher activity against the chloroquine-resistant strain (IC(50) = 32 nM) than against the chloroquine-sensitive one.
International audienceDuring a manufacturing process, the ultrasonic shot peening (USP) technique can be used as the final surface treatment. The aim of this operation is to introduce surface compressive residual stresses in order to prevent crack propagation advancement. Although the numerical simulation method is able to predict the level of residual stresses in a peened part, the 3D modelling of the real USP process, in which many successive and shifted impacts take place, is very delicate to perform and costly in terms of computing time and memory space required. In this paper, a two step method based at first on the calculation of the averaged plastic strain tensor in a half-space by using a semi-analytical method and in a second time on the transfer of this plastic strain field to a finite element model is proposed in order to simulate the effects of the USP process in thin structures. The accuracy and advantages of the semi-analytical method are validated by a benchmark with several finite element codes. Experiments, similar to the Almen test, are performed on thin plates of Inconel 600. Numerical results in terms of distortions and residual stresses are compared with the experimental data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.