People spend a considerable amount of time indoors. As a result, exposure to indoor contaminants is of great concern, notably via settled dust ingestion in particular for infants and toddlers. This paper proposes a critical review on the organic contamination of settled house dust and human exposure over the past 10 years and focused on sources, contaminations and measurement methods (sampling, pretreatment, storage and analysis). As many compounds were identified, arises the question of which ones to consider. Sensitive and selective analytical methods for simultaneous determination of targeted substances should be developed and evaluated. Various methods were described for sampling and sample preparation. Harmonization and standardization are needed to enable comparison of results from similar studies. Finally, an integrated multipollutant and multicompartment (settled dust, suspended particles and air) approach appears essential in order to determine the extent of the threat to public health posed by indoor contaminants.
Semivolatile organic compounds (SVOCs) are ubiquitous contaminants in indoor environments, emanating from different sources and partitioning among several compartments, including the gas phase, airborne particles, and settled dust. Nevertheless, simultaneous measurements in the three compartments are rarely reported. In this study, we investigated indoor concentrations of a wide range of SVOCs in 30 French dwellings. In settled dust, 40 out of 57 target compounds were detected. The highest median concentrations were measured for phthalates and to a lesser extent for bisphenol A, synthetic musks, some pesticides, and PAHs. Di(2-ethylhexyl)phthalate (DEHP) and diisononyl phthalate (DINP) were the most abundant compounds. A total of 34 target compounds were detected both in the gas phase and airborne particles. The highest concentrations were measured for diisobutyl phthalate (DiBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and synthetic musks in the gas phase and for DEHP, DiBP, DBP, and DINP in the airborne particles. This is the first study on the indoor concentrations of a wide range of SVOCs in settled dust, gas phase, and airborne particles collected simultaneously in each dwelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.