A deficit of endogenous pain inhibitory systems has been suggested to contribute to some chronic pain conditions, one of them being fibromyalgia. The aim of the investigation was to test whether endogenous pain inhibitory systems were activated by a spatial summation procedure in 30 fibromyalgia, 30 chronic low back pain, and 30 healthy volunteers who participated in a cross-over trial (two sessions). Each session consisted of visual analog scale ratings of pain during the immersion of different surfaces of the arm in circulating noxious cold (12 degrees C) water. The arm was arbitrarily divided into eight segments from the fingertips to the shoulder. One session was ascending (from the fingertips to the shoulder) and the other was descending (from the shoulder to the fingertips); they included eight consecutive 2-min immersions separated by 5-min resting periods. For healthy and low back pain subjects, pain was perceived differently during the ascending and descending sessions (P=0.0001). The descending session resulted in lower pain intensity and unpleasantness. This lowering of the perception curve seems to be due to a full recruitment of inhibitory systems at the beginning of the descending session as opposed to a gradual recruitment during the ascending session. For fibromyalgia subjects, no significant differences were found between the increasing and decreasing sessions (P>0.05). These data support a deficit of endogenous pain inhibitory systems in fibromyalgia but not in chronic low back pain. The treatments proposed to fibromyalgia patients should aim at stimulating the activity of those endogenous systems.
Changes in pain produced by psychological factors (e.g., placebo analgesia) are thought to result from the activity of specific cortical regions. However, subcortical nuclei, including the periaqueductal gray and the rostroventral medulla, also show selective activation when subjects expect pain relief. These brainstem regions send inhibitory projections to the spine and produce diffuse analgesic responses. Regrettably the precise contribution of spinal mechanisms in predicting the strength of placebo analgesia is unknown. Here, we show that expectations regarding pain radically change the strength of spinal nociceptive responses in humans. We found that contrary to expectations of analgesia, expectations of hyperalgesia completely blocked the analgesic effects of descending inhibition on spinal nociceptive reflexes. Somatosensory-evoked brain potentials and pain ratings further confirmed changes in spino-thalamo-cortical responses consistent with expectations and with changes in the spinal response. These findings provide direct evidence that the modulation of pain by expectations is mediated by endogenous pain modulatory systems affecting nociceptive signal processing at the earliest stage of the central nervous system. Expectation effects, therefore, depend as much about what takes place in the spine as they do about what takes place in the brain. Furthermore, complete suppression of the analgesic response normally produced by descending inhibition suggests that anti-analgesic expectations can block the efficacy of pharmacologically valid treatments which has important implications for clinical practice.
The findings tell us that changes in pain perception and endogenous pain modulation arrive earlier than previously suggested. Studies on aging and pain should include a middle-aged group when comparing pain measures across the adult lifespan.
Prematurity is known to affect the development of various neurophysiological systems, including the maturation of pain and cardiac circuits. The purpose of this study was to see if numerous painful interventions, experienced soon after birth, affect counterirritation-induced analgesia (triggered using the cold pressor test) later in life. A total of 26 children, between the ages of 7 and 11 participated in the study. Children were divided into three groups, according to their birth status (i.e., term-born, born preterm and exposed to numerous painful interventions, or born preterm and exposed to few painful interventions). Primary outcome measures were heat pain thresholds, heat sensitivity scores, and cardiac reactivity. Results showed that preterm children and term-born children had comparable pain thresholds. Exposure to conditioning cold stimulation significantly increased heart rate and significantly decreased the thermal pain sensitivity of term-born children. These physiological reactions were also observed among preterm children who were only exposed to a few painful interventions at birth. Changes in heart rate and pain sensitivity in response to conditioning cold stimulation were not observed in preterm children that had been exposed to numerous painful procedures during the neonatal period. These results suggest that early pain does not lead to enhanced pain sensitivity when premature babies become children, but that their endogenous pain modulatory mechanisms are not as well developed as those of children not exposed to noxious insult at birth. Greater frequency of painful procedures also dampened the rise in heart rate normally observed when experimental pain is experienced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.