Summary
Progressive neuronal cell loss in a small subset of brainstem and mesencephalic nuclei and widespread aggregation of the α-synuclein protein in the form of Lewy bodies and Lewy neurites are neuropathological hallmarks of Parkinson’s disease. Most cases occur sporadically, but mutations in several genes, including α-synuclein, are associated with disease development. The mechanisms driving neurodegeneration remain unknown, hence limiting therapeutic strategies aimed at blocking neuronal death. This review describes current evidence for a predominant role of α-synuclein in the pathogenesis of PD, as well as some of the most promising α-synuclein-based strategies currently in development for this incurable neurodegenerative disorder.
Retinoic acid (RA) plays a critical role in normal development, growth, and maintenance of certain tissues. The action of RA is thought to be mediated in part by the three nuclear receptors (RARa, -13, and -y), each of which is expressed as multiple isoforms. To investigate the function ofthe
Our data corroborate previous observations demonstrating the role of COL4A1 in cerebral microangiopathy and expand the phenotypic spectrum associated with mutations in this gene. We delineate a novel association between the Axenfeld-Rieger anomaly and leukoencephalopathy and stroke. Ann Neurol 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.