We study a mathematical model describing dislocation dynamics in crystals. We consider a single dislocation line moving in its slip plane. The normal velocity is given by the Peach-Koehler force created by the dislocation line itself. The mathematical model is an eikonal equation whose velocity is a non-local quantity depending on the whole shape of the dislocation line. We study the special cases where the dislocation line is assumed to be a graph or a closed loop. In the framework of discontinuous viscosity solutions for HamiltonJacobi equations, we prove the existence and uniqueness of a solution for small time. We also give physical explanations and a formal derivation of the mathematical model. Finally, we present numerical results based on a level-sets formulation of the problem. These results illustrate in particular the fact that there is no general inclusion principle for this model.
Abstract. We propose a bi-dimensional nite volume extension of a continuous ALE method on unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge, the control point possess a weight that permits to represent any conic (see for example [LIGACH]) and thanks to [WAGUSEDE, WAGU], we are able to compute the exact area of our cells. We then give an extension of scheme for remapping step based on volume uxing [MARSHA] and selfintersection ux [ALE2DHAL]. For the rezoning phase, we propose a three step process based on moving nodes, followed by control point and weight re-adjustment. Finally, for the hydrodynamic step, we present the GLACE scheme [GLACE] extension (at rst-order) on conic cell using the same formalism. We only propose some preliminary rst-order simulations for each steps: Remap, Pure Lagrangian and nally ALE (rezoning and remapping).Résumé. Nous proposons une extension volumes nis bi-dimensionnelle d'une méthode ALE continue sur des cellules non structurées dont les bords sont paramétrés par des courbes de Bézier quadratiques rationnelles. Pour chaque arête, le point de contrôle possède un poids qui permet de représenter n'importe quelle conique [LIGACH] et grâce à [WAGUSEDE, WAGU], nous pouvons calculer l'aire exacte de nos cellules. Pour la phase de remapping, on donne l'extension de deux schéma, l'un basé sur le calcul de ux de volumes [MARSHA] et l'autre par ux avec autointersection [ALE2DHAL]. Pour la phase de lissage de maillage, nous proposons un processus en trois étapes basées sur le déplacement des noeuds, suivi de celui des points de contrôle puis nalement du réajustement du poids. Enn, pour la phase hydrodynamique, on présente l'extension du schéma GLACE [GLACE] (à l'ordre un) sur les cellules coniques en utilisant le même formalisme. Nous montrons seulement des simulations préliminaires à l'ordre 1 sur chaque étape : Remap, Lagrange pur et ALE (rezoning et remapping).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.