The photothermal radiometry (PTR) signal is analyzed in order to simultaneously obtain the thermal diffusivity and effusivity of solid materials. Analytical procedures that allow the determination of the thermal parameters via a frequency scan of the amplitude or the phase of the PTR signal are presented. The measurement procedures do not involve a multiparameter-fit optimization algorithm. The methods have been used for the measurement of thermophysical properties of vitreous carbon and lead-itanate-zirconate ceramic samples.
Thermal properties of pellets composed of carbon nanotubes (CNTs), single-walled or multiple-walled, and potassium bromide have been investigated via photothermal radiometry. Pellets containing 2 wt % CNT show a significant enhancement in thermal conductivity (k) by at least four times. However, when the concentration of a CNT is raised to 3 wt % or higher, a sudden drop in k is observed whereas the electrical conductivity keeps increasing and follows the percolation law. The thermal conductivity data have been modeled and interpreted in terms of a morphological transition between a compacted and an unconsolidated granular media.
A photothermal radiometry configuration that allows the measurement of the temperature dependence of thermal parameters of solid materials is described. Two procedures are proposed. The first one is based on a combination of phase and amplitude signal data collected at a single frequency and the second one makes use of the information contained in the phase signal data, obtained at two different chopping frequencies. The methods are recommended for calorimetric studies requiring temperature scans at a constant chopping frequency.
Photothermal radiometry is employed to investigate the thermal parameters (diffusivity, effusivity, conductivity, and heat capacity) of carbon nanotubes [single-walled (SWNT) or multiple-walled (MWNT)] and potassium bromide (KBr) pressed pellets as a function of SWNT or MWNT mass fraction. A significant enhancement of the thermal conductivity for carbon nanotubes (CNTs) contents up to 2 wt. % was observed. Above 3 wt. % CNT, a morphological transition from a compacted to an unconsolidated granular media occurs leading to a sharp decrease of the thermal conductivity (k) caused by the presence of air interfaces. A geometrical model based on interpenetrating continua is applied to describe the unusual evolution of the thermal conductivity. The behavior of k is also discussed in regard to the latest theoretical reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.