Aims. We present a new three-dimensional radiation hydrodynamics code called HERACLES that uses an original moment method to solve the radiative transfer. Methods. The radiation transfer is modelled using a two-moment model and a closure relation that allows large angular anisotropies in the radiation field to be preserved and reproduced. The radiative equations thus obtained are solved by a second-order Godunov-type method and integrated implicitly by using iterative solvers. HERACLES has been parallelized with the MPI library and implemented in Cartesian, cylindrical, and spherical coordinates. To characterize the accuracy of HERACLES and to compare it with other codes, we performed a series of tests including purely radiative tests and radiation-hydrodynamics ones.Results. The results show that the physical model used in HERACLES for the transfer is fairly accurate in both the diffusion and transport limit, but also for semi-transparent regions.Conclusions. This makes HERACLES very well-suited to studying many astrophysical problems such as radiative shocks, molecular jets of young stars, fragmentation and formation of dense cores in the interstellar medium, and protoplanetary discs.
The ITER Integrated Modelling & Analysis Suite (IMAS) will support both plasma operation and research activities on the ITER tokamak experiment. The IMAS will be accessible to all ITER members as a key tool for the scientific exploitation of ITER. The backbone of the IMAS infrastructure is a standardized, machine-generic data model that represents simulated and experimental data with identical structures. The other outcomes of the IMAS design and prototyping phase are a set of tools to access data and design integrated modelling workflows, as well as first plasma simulators workflows and components implemented with various degrees of modularity.
The status of the European Transport Solver, a new 1-D core transport code that is being developed by the members of Integrated Modelling Project 3 ("Transport Code and Discharge Evolution") of the EFDA Task Force on Integrated Tokamak Modelling (ITM), is described. The approach taken by the ITM is to couple codes so that the only exchange is via well-specified data structures (Consistent Physical Objects), with the aim of having the workflow managed by Kepler, a scientific workflow engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.