The solventless reaction of diisopropylaminoborane with n-butylamine, at room temperature, leads to a mixture of B H-, B H -, and B H -containing species. At low temperature, the reaction outcome is completely modified, thus leading selectively to the formation of high-mass polybutylaminoborane. When extended to a variety of primary amines, under solventless conditions and at low temperature, this reaction provides a new, efficient, and direct metal-free access to high-molecular-mass polyaminoboranes in good to high yields under mild reaction conditions.
Separation of phospholipid classes in lipid extracts from the scallop Pecten maximus, the Pacific oyster Crassostrea gigas, and the blue mussel Mytilus edulis was conducted using HPLC. An isolated polar lipid fraction was found to contain a very high level of DHA, up to 80 mol% of the total FA. MS with electrospray ionization in the positive-ion mode, tandem MS (MS-MS) and multidimensional NMR spectroscopy were used to analyze the detailed chemical structure of this polar lipid fraction. The isolated fraction contained exclusively cardiolipin (CL) molecules, predominantly in a form with four docosahexaenoyl chains (Do4CL). To the best of our knowledge, this is the first time that such a CL form has been analytically characterized and described in these three bivalve species. This tetradocosahexaenoic CL is presumed to reflect a specific adaptation in bivalves that enhances the structural and functional mechanisms of biomembranes in response to variations in environmental conditions (temperature, salinity, emersion).
Polyhydroxyalkanoates (PHAs) are a unique class of polyesters especially due to their chemical diversity imparted by their side-chain substituent that provides a handle to tune their properties, such as their...
The organocatalyzed ROP of some 4-alkoxymethylene-β-propiolactones (BPLORs) towards the formation of the corresponding poly(hydroxyalkanoate)s (PHAs; PBPLORs) is investigated simply using basic organocatalysts of the guanidine (TBD), amidine (DBU) or phosphazene (BEMP) type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.