CorrectionsBIOCHEMISTRY. For the article ''Interaction of RNA polymerase with forked DNA: Evidence for two kinetically significant intermediates on the pathway to the final complex,'' by Laura Tsujikawa, Oleg V. Tsodikov, and Pieter L. deHaseth, which appeared in number 6, March 19, 2002, of Proc. Natl. Acad. Sci. USA (99, 3493-3498; First Published March 12, 2002; 10.1073͞ pnas.062487299), the authors note the following concerning RNA polymerase (RNAP) concentrations. No correction was made for the fraction of RNAP (0.5) that is active in promoter binding. With this correction, the values of K 1 and K app (but not K f ) would increase by about a factor of 2. The relative values would remain essentially unchanged. Also, the legends to Figs. 2, 3, and 5 contain errors pertaining to the symbols used for data obtained with and without heparin challenge, the duration of the challenge, and the concentration of added heparin. The figures and the corrected legends appear below. Fig. 2. Determination of equilibrium affinities by titration of wt Fork with RNAP. The reactions contained 1 nM wt Fork and variable amounts of RNAP as shown and were analyzed by electrophoretic mobility shift immediately (OE; data shown are averages of three independent experiments) or after a challenge with 100 g͞ml heparin for 10 min (F; data shown are averages of four independent experiments). The curves shown reflect the simultaneous errorweighted fits of the data to Eqs. 3 and 4 -7. The parameters are shown in Table 1 (line 1). www.pnas.org͞cgi͞doi͞10.1073͞pnas.013667699 Fig. 3. Kinetics of complex formation. RNAP (65 nM) and wt forked DNA (1 nM) were incubated for various time intervals and then complex formation was determined immediately (Ϫheparin) or after a 2-min challenge with 100 g͞ml heparin (ϩheparin). The Ϫheparin data (s) were fit (error-weighted) with Eq. 8 with a 2 ϭ 0 (kaϪ ϭ 0.10 Ϯ 0.01 s Ϫ1 ) and the ϩheparin data (OE) with both single (k aϩ ϭ 0.036 Ϯ 0.004 s Ϫ1 ; thin line) and double-exponential (ka 1 ϭ 0.044 Ϯ 0.002 s Ϫ1 ; ka 2 ϭ (5 Ϯ 3) ϫ 10 Ϫ4 s Ϫ1 ; thick line) equations. Fig. 5.Comparison of the kinetics for formation and dissociation of competitor-resistant complexes between RNAP and wt Fork. Association data were obtained as described in the text and the legend for Fig. 3 except the concentration of forked DNA was 10 nM. Dissociation kinetics were obtained by challenging with 100 g͞ml heparin a mixture of RNAP and forked DNA that had been incubated for 30 min. The curves represent double-exponential fits of the data to Eq. 10. (A) wt RNAP. The observed association rate constants (s) are shown in the legend for Fig. 3; for the slow phase of the dissociation of the wt Fork-wt RNAP complex (F), kd 2 ϭ (1.3 Ϯ 0.2) ϫ 10 Ϫ4 s Ϫ1 . (B) YYW RNAP. The slow phase of the association reaction (F) has a ka 2 ϭ (1.1 Ϯ 0.3) ϫ 10 Ϫ3 s Ϫ1 ; the slow phase of the dissociation reaction (s), a kd 2 ϭ (6 Ϯ 1) ϫ 10 Ϫ4 s Ϫ1 . Fig. 6. BCL-6 preferentially binds to the wild-type exon 1 in Ly1 cells. Both Ly1 and the control Ly7 cells wer...
The VAMP software (Visualization and Analysis of array-CGH,transcriptome and other Molecular Profiles) is available upon request. It can be tested on public datasets at http://bioinfo.curie.fr/vamp. The documentation is available at http://bioinfo.curie.fr/vamp/doc.
Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism (SNP) assay, and expression of Schlafen family member 11 (SLFN11) and retinoblastoma transcriptional corepressor 1 (RB1) was evaluated by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry analyses. In addition, the combination of irinotecan and the ataxia telangiectasia and Rad3-related protein (ATR) inhibitor VE-822 was tested in SLFN11-negative PDXs, and two clinical non-camptothecin TOP1 inhibitors (LMP400 and LMP776) were tested. Thirty-eight percent of the TNBC models responded to irinotecan. BRCAness combined with high SLFN11 expression and RB1 loss identified highly sensitive tumors, consistent with the notion that deficiencies in cell cycle checkpoints and DNA repair result in high sensitivity to TOP1 inhibitors. Treatment by the ATR inhibitor VE-822 increased sensitivity to irinotecan in SLFN11-negative PDXs and abolished irinotecan-induced phosphorylation of checkpoint kinase 1 (CHK1). LMP400 (indotecan) and LMP776 (indimitecan) showed high antitumor activity in BRCA1-mutated or BRCAness-positive PDXs. Last, low SLFN11 expression was associated with poor survival in 250 patients with TNBC treated with anthracycline-based chemotherapy. In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.