for the EVEREST II study group IMPORTANCE Polypoidal choroidal vasculopathy (PCV) is a common subtype of exudative age-related macular degeneration among Asian individuals. To our knowledge, there are no large randomized clinical trials to evaluate intravitreal ranibizumab, with and without verteporfin photodynamic therapy (vPDT), for the treatment of PCV.OBJECTIVE To compare the efficacy and safety of combination therapy of ranibizumab and vPDT with ranibizumab monotherapy in PCV. DESIGN, SETTING, AND PARTICIPANTSA double-masked, multicenter randomized clinical trial of 322 Asian participants with symptomatic macular PCV confirmed by the Central Reading Center using indocyanine green angiography was conducted between August 7, 2013, and March 2, 2017.INTERVENTIONS Participants were randomized 1:1 to ranibizumab, 0.5 mg, and vPDT (n = 168; combination therapy group) or ranibizumab, 0.5 mg, and sham PDT (n = 154; monotherapy group). All participants received 3 consecutive monthly ranibizumab injections, followed by a pro re nata regimen. Participants also received vPDT/sham PDT on day 1, followed by a pro re nata regimen based on the presence of active polypoidal lesions. MAIN OUTCOMES AND MEASURESStep 1 assessed whether combination therapy was noninferior (5-letter margin) to monotherapy for change in best-corrected visual acuity from baseline and superior in complete polyp regression. If noninferiority was established, step 2 assessed whether combination therapy was superior to monotherapy measured by best-corrected visual acuity change at month 12.RESULTS Baseline demographics of the 322 participants were comparable between the treatment groups. Mean (SD) age of the patients was 68.1 (8.8) years, and overall, 69.9% of the patients were men. At baseline, the overall mean best-corrected visual acuity and mean central subfield thickness were 61.1 letters and 413.3 μm, respectively. At 12 months, mean improvement from baseline was 8.3 letters with combination therapy vs 5.1 letters with monotherapy (mean difference, 3.2 letters; 95% CI, 0.4-6.1), indicating that combination therapy met the predefined criterion for noninferiority as well as being superior to monotherapy (P = .01). Combination therapy was also superior to monotherapy in achieving complete polyp regression at month 12 (69.3% vs 34.7%; P < .001). Over 12 months, the combination therapy group received a median of 4.0 ranibizumab injections compared with 7.0 in the monotherapy group. Vitreous hemorrhage was the only ocular serious adverse event (combination therapy group, 1 [0.6%]; monotherapy group, 3 [2.0%]).CONCLUSIONS AND RELEVANCE After 12 months, combination therapy of ranibizumab plus vPDT was not only noninferior but also superior to ranibizumab monotherapy in best-corrected visual acuity and superior in complete polyp regression while requiring fewer injections. Combination therapy should be considered for eyes with PCV.TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01846273.
; for the EVEREST II Study Group IMPORTANCE The 2-year efficacy and safety of combination therapy of ranibizumab administered together with verteporfin photodynamic therapy (vPDT) compared with ranibizumab monotherapy in participants with polypoidal choroidal vasculopathy (PCV) are unclear. OBJECTIVE To compare treatment outcomes of ranibizumab, 0.5 mg, plus prompt vPDT combination therapy with ranibizumab, 0.5 mg, monotherapy in participants with PCV for 24 months. DESIGN, SETTING, AND PARTICIPANTS This 24-month, phase IV, double-masked, multicenter, randomized clinical trial (EVEREST II) was conducted among Asian participants from August 7, 2013, to March 2, 2017, with symptomatic macular PCV confirmed using indocyanine green angiography. INTERVENTIONS Participants (N = 322) were randomized 1:1 to ranibizumab, 0.5 mg, plus vPDT (combination therapy group; n = 168) or ranibizumab, 0.5 mg, plus sham PDT (monotherapy group; n = 154). All participants received 3 consecutive monthly ranibizumab injections, followed by a pro re nata regimen. Participants also received vPDT (combination group) or sham PDT (monotherapy group) on day 1, followed by a pro re nata regimen based on the presence of active polypoidal lesions. MAIN OUTCOMES AND MEASURES Evaluation of combination therapy vs monotherapy at 24 months in key clinical outcomes, treatment exposure, and safety. Polypoidal lesion regression was defined as the absence of indocyanine green hyperfluorescence of polypoidal lesions. RESULTS Among 322 participants (mean [SD] age, 68.1 [8.8] years; 225 [69.9%] male), the adjusted mean best-corrected visual acuity (BCVA) gains at month 24 were 9.6 letters in the combination therapy group and 5.5 letters in the monotherapy group (mean difference, 4.1 letters; 95% CI, 1.0-7.2 letters; P = .005), demonstrating that combination therapy was superior to monotherapy by the BCVA change from baseline to month 24. Combination therapy was superior to monotherapy in terms of complete polypoidal lesion regression at month 24 (81 of 143 [56.6%] vs 23 of 86 [26.7%] participants; P < .001). Participants in the combination group received fewer ranibizumab injections (median, 6.0 [interquartile range (IQR), 4.0-11.0]) than the monotherapy group (median, 12.0 [IQR, 7.0-17.0]) up to month 24. The combination group required a median of 2.0 (IQR, 1.0-3.0) vPDT treatments for 24 months, with 75 of 168 participants (44.6%) requiring only 1 vPDT treatment. CONCLUSIONS AND RELEVANCE The 24-month data findings confirm that ranibizumab therapy, given as monotherapy or in combination with vPDT, is efficacious and safe for treatment of PCV. Combination therapy with vPDT added to ranibizumab achieved superior BCVA gain, increased odds of complete polypoidal lesion regression, and fewer treatment episodes compared with ranibizumab monotherapy.
In patients with both SRF and PVD at baseline, similar BCVA outcomes were observed regardless of treatment frequency. These patients may require less frequent treatments compared with patients without SRF, without PVD, or without either who may require more frequent injections for maintenance of vision. This finding may have implications in clinical practice by helping to tailor an individualized re-treatment interval in nAMD patients.
Radioiodinated zinc phthalocyanine including [125I]ZnPcI4 and differently sulfonated [65Zn]ZnPcS (ZnPcS4, ZnPcS3, ZnPcS2 and ZnPcS1.75, a mixture of adjacent di and 25% mono) were prepared in order to study cell uptake and release kinetics in EMT-6 cells. The same compounds were evaluated for their in vitro phototoxicity and the biological parameters were compared to partition coefficients to arrive at quantitative structure-activity relationships (QSAR). At 1 microM in 1% serum, at 37 degrees C, all dyes showed rapid cell uptake during the first hour followed by a slow accumulation phase. After 24 h, the highest cellular concentration was observed with the lipophilic ZnPcI4, followed by the amphiphilic ZnPcS2 and ZnPcS1.75. The hydrophilic ZnPcS4 and ZnPcS3 showed lower uptake. Dye release from dye-loaded cells during incubation in dye-free medium could reach up to 60% and was shown to depend mainly on the amount of drug incorporated rather than the type of compound. These results suggest that care should be taken in interpreting dye toxicity data, which involve in vitro cell manipulations in dye-free medium, particularly during in vitro-in vivo protocols. The EMT-6 cell survival after 1 h or 24 h incubation with 1 microM dye in 1% serum followed by exposure to red light was assessed by means of the colorimetric 3-(4,5-dimethylthiazol-2-yl)-diphenyl-tetrazolium bromide (MTT) assay. Photocytotoxicities correlated inversely with the tendencies of the dyes to aggregate. Increased dye uptake by the cells also correlated with their activities, except for the lipophilic ZnPcI4, which showed the highest cell uptake but little phototoxicity. The QSAR between phototoxicity and the log of the partition coefficients (phosphate-buffered saline and n-octanol) gave a parabola with optimal partition values corresponding to the adjacent sulfonated ZnPcS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.