In this study, using a high-resolution gel electrophoresis technique, we have characterized the myosin heavy chain composition in different skeletal muscle of the mouse during postnatal development. The pattern of myosin heavy chain expression was studied in four hind limb muscles, the diaphragm, the tongue and the masseter. All of these muscles displayed the usual sequential transitions from embryonic to neonatal and to adult myosin heavy chain isoforms but more interestingly these transitions occur with a distinct chronology in the different muscles. In addition, our results demonstrated a transitory pattern of expression for certain adult myosin heavy chain isoforms in the soleus and the tongue. In the soleus muscle IIB and in the tongue IIA myosin heavy chain isoforms were detected only for a short time during postnatal life. Our results demonstrate that muscles of the mouse with different functions are subjected to a distinct programs of myosin isoform transitions during postnatal muscle development. This study describes new data which will help us to understand both postnatal muscle development in transgenic mouse muscles as well as in muscle pathology.
Hence, in visceral AT, CIT exerts a specific induction of the beta-oxidation capacity in young rats and a selective stimulation of FA release in old rats, therefore providing a direct mechanism of CIT action to reduce AT mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.