Axons rely on guidance cues to reach remote targets during nervous system development. A well-studied model system for axon guidance is the retinotectal projection. The retina can be divided into halves; the nasal half, next to the nose, and the temporal half. A subset of retinal axons, those from the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons in vitro, demonstrating its repulsive and axon-specific guiding activity.
Repulsive guidance molecule (RGM) is an axon guidance protein that repels retinal axons upon activation of the neogenin receptor. To understand the functions of RGM-neogenin complexes in vivo, we used gene transfer technology to perturb their expression in the developing neural tube of chick embryos. Surprisingly, neogenin over-expression or RGM down-expression in the neural tube induces apoptosis. Neogenin pro-apoptotic activity in immortalized neuronal cells and in the neural tube is associated with the cleavage of its cytoplasmic domain by caspases. Thus neogenin is a dependence receptor inducing cell death in the absence of RGM, whereas the presence of RGM inhibits this effect.
Although Munc18-1 was originally identified as a syntaxin1-interacting protein, the physiological significance of this interaction remains unclear. In fact, recent studies of Munc18-1 mutants have suggested that Munc18-1 plays a critical role for docking of secretory vesicles, independent of syntaxin1 regulation. Here we investigated the role of Munc18-1 in syntaxin1 localization by generating stable neuroendocrine cell lines in which Munc18-1 was strongly down-regulated. In these cells, the secretion capability, as well as the docking of dense-core vesicles, was significantly reduced. More importantly, not only was the expression level of syntaxin1 reduced, but the localization of syntaxin1 at the plasma membrane was also severely perturbed. The mislocalized syntaxin1 resided primarily in the perinuclear region of the cells, in which it was highly colocalized with Secretogranin II, a marker protein for dense-core vesicles. In contrast, the expression level and the plasma membrane localization of SNAP-25 were not affected. Furthermore, the syntaxin1 localization and the secretion capability were restored upon transfection-mediated reintroduction of Munc18-1. Our results indicate that endogenous Munc18-1 plays a critical role for the plasma membrane localization of syntaxin1 in neuroendocrine cells and therefore necessitates the interpretation of Munc18-1 mutant phenotypes to be in terms of mislocalized syntaxin1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.