Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand‐dependent activation function, AF‐2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF‐2 in yeast and interacts in a ligand‐dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF‐2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF‐2 antagonist hydroxytamoxifen cannot promote ER‐TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand‐dependent AF‐2. Interestingly, the TIF1 N‐terminal moiety is fused to B‐raf in the mouse oncoprotein T18.
Cationic carbon dots were fabricated by pyrolysis of citric acid and bPEI25k under microwave radiation. Various nanoparticles were produced in a 20-30% yield through straightforward modifications of the reaction parameters (stoichiometry of the reactants and energy supply regime). Particular attention was paid to the purification of the reaction products to ensure satisfactory elimination of the residual starting polyamine. Intrinsic properties of the particles (size, surface charge, photoluminescence and quantum yield) were measured and their ability to form stable complexes with nucleic acid was determined. Their potential to deliver plasmid DNA or small interfering RNA to various cell lines was investigated and compared to that of bPEI25k. The pDNA in vitro transfection efficiency of these carbon dots was similar to that of the parent PEI, as was their cytotoxicity. The higher cytotoxicity of bPEI25k/siRNA complexes when compared to that of the CD/siRNA complexes however had marked consequences on the gene silencing efficiency of the two carriers. These results are not fully consistent with those in some earlier reports on similar nanoparticles, revealing that toxicity of the carbon dots strongly depends on their protocol of fabrication. Finally, these carriers were evaluated for in vivo gene delivery through the non-invasive pulmonary route in mice. High transgene expression was obtained in the lung that was similar to that obtained with the golden standard formulation GL67A, but was associated with significantly lower toxicity. Post-functionalization of these carbon dots with PEG or targeting moieties should significantly broaden their scope and practical implications in improving their in vivo transfection efficiency and biocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.