Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value (F o 70 10 ) of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F o ؍ 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F o ؍ 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P < 0.0001). Furthermore, despite similar levels of cell inactivation measured by growth on BHI media after heating, 132 and 8 genes were differentially expressed at 71°C compared to 58°C and 60°C at F o ؍ 3, respectively (P-FDR < 0.01). Among them, genes such as aroA, citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.