A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuations measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configuration for use in cruise flight altitudes. Flight test measurements demonstrate this unique lidar system being able to resolve air density fluctuations occurring in light-to-moderate CAT at 5 km or moderate CAT at 10 km distance. A scaling of the determined stability and noise characteristics shows that such performance is adequate for an application in commercial air transport.
Original waveforms and optimized signal processing are proposed for frequency-modulated continuous-wave lidar for range finding, velocimetry, and laser anemometry. For range finding, the aim of this signal processing is to extend lidar range and reduce ambiguities. Moreover, the effect of moderate atmospheric turbulence on lidar efficiency is analyzed for infinite and finite targets, taking into account wind-induced bistatism. For laser anemometry, the aim is to measure air speed at the shortest distance farther than the rotor-induced turbulent volume around the helicopter and to avoid parasitic echoes coming from clouds or hard targets in the vicinity of a helicopter.
An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.
Frequency-modulated continuous-wave lidar is evaluated for range finding, velocimetry, and laser anemometry. An original signal processing and waveform calibration for range finding leads to a reduction of computational effort while preserving capability for long-range measurement. Multiple target distance measurement is also demonstrated. For laser anemometry, the aim is to avoid parasitic echoes in the vicinity of a helicopter and to measure the air speed at the shortest distance farther than the rotor-induced turbulent volume around the helicopter. Flight tests of this functionality and vortex ring state warning are demonstrated.
In this paper, we present the development of a laser source for a LIDAR application. This sensor is proposed as a standby instrument to provide a way to measure some aircraft air data such as the air speed. Although such systems already exist, none of them are based on an optical measurement. Thus, the use of a LIDAR would provide a backup channel with different failure modes than existing systems. Our LIDAR system allows determining the air speed through Doppler measurement at a wavelength of 1.55 µm on aerosol particles present around the aircraft. The core of this device is a glass integrated optics continuous DFB laser. Its performances in term of single-frequency, stability, noise and linewidth are assessed in order to ensure the correct operation of the LIDAR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.