A C-terminally truncated Y145Stop variant of the human prion protein (huPrP23-144) is associated with a hereditary amyloid disease known as PrP cerebral amyloid angiopathy. Previous studies have shown that recombinant huPrP23-144 can be efficiently converted in vitro to the fibrillar amyloid state, and that residues 138 and 139 play a critical role in the amyloidogenic properties of this protein. Here, we have used magic-angle spinning solid-state NMR spectroscopy to provide high-resolution insight into the protein backbone conformation and dynamics in fibrils formed by 13 C, 15 N-labeled huPrP23-144. Surprisingly, we find that signals from Ϸ100 residues (i.e., Ϸ80% of the sequence) are not detected above approximately ؊20°C in conventional solid-state NMR spectra. Sequential resonance assignments revealed that signals, which are observed, arise exclusively from residues in the region 112-141. These resonances are remarkably narrow, exhibiting average 13 C and 15 N linewidths of Ϸ0.6 and 1 ppm, respectively. Altogether, the present findings indicate the existence of a compact, highly ordered core of huPrP23-144 amyloid encompassing residues 112-141. Analysis of 13 C secondary chemical shifts identified likely -strand segments within this core region, including -strand 130 -139 containing critical residues 138 and 139. In contrast to this relatively rigid, -sheet-rich amyloid core, the remaining residues in huPrP23-144 amyloid fibrils under physiologically relevant conditions are largely unordered, displaying significant conformational dynamics.protein structure ͉ solid-state NMR ͉ protein misfolding ͉ transmissible spongiform encephalopathies
Magic-angle-spinning solid-state nuclear magnetic resonance (SSNMR) studies of natively diamagnetic uniformly (13)C,(15)N-enriched proteins, intentionally modified with side chains containing paramagnetic ions, are presented, with the aim of using the concomitant nuclear paramagnetic relaxation enhancements (PREs) as a source of long-range structural information. The paramagnetic ions are incorporated at selected sites in the protein as EDTA-metal complexes by introducing a solvent-exposed cysteine residue using site-directed mutagenesis, followed by modification with a thiol-specific reagent, N-[S-(2-pyridylthio)cysteaminyl]EDTA-metal. Here, this approach is demonstrated for the K28C and T53C mutants of B1 immunoglobulin-binding domain of protein G (GB1), modified with EDTA-Mn(2+) and EDTA-Cu(2+) side chains. It is shown that incorporation of paramagnetic moieties, exhibiting different relaxation times and spin quantum numbers, facilitates the convenient modulation of longitudinal (R(1)) and transverse (R(2), R(1rho)) relaxation rates of the protein (1)H, (13)C, and (15)N nuclei. Specifically, the EDTA-Mn(2+) side chain generates large distance-dependent transverse relaxation enhancements, analogous to those observed previously in the presence of nitroxide spin labels, while this phenomenon is significantly attenuated for the Cu(2+) center. Both Mn(2+) and Cu(2+) ions cause considerable longitudinal nuclear PREs. The combination of negligible transverse and substantial longitudinal relaxation enhancements obtained with the EDTA-Cu(2+) side chain is especially advantageous, because it enables structural restraints for most sites in the protein to be readily accessed via quantitative, site-resolved measurements of nuclear R(1) rate constants by multidimensional SSNMR methods. This is demonstrated here for backbone amide (15)N nuclei, using methods based on 2D (15)N-(13)C chemical shift correlation spectroscopy. The measured longitudinal PREs are found to be highly correlated with the proximity of the Cu(2+) ion to (15)N spins, with significant effects observed for nuclei up to approximately 20 A away, thereby providing important information about protein structure on length scales that are inaccessible to traditional SSNMR techniques.
Biomacromolecules that are challenging for the usual structural techniques can be studied with atomic resolution by solid-state nuclear magnetic resonance. However, the paucity of >5 Å distance restraints, traditionally derived from measurements of magnetic dipole-dipole couplings between protein nuclei, is a major bottleneck that hampers such structure elucidation efforts. Here we describe a general approach that enables the rapid determination of global protein fold in the solid phase via measurements of nuclear paramagnetic relaxation enhancements (PREs) in several analogs of the protein of interest containing covalently-attached paramagnetic tags, without the use of conventional internuclear distance restraints. The method is demonstrated using six cysteine-EDTA-Cu2+ mutants of the 56-residue B1 immunoglobulin-binding domain of protein G, for which ~230 longitudinal backbone 15N PREs corresponding to ~10-20 Å distances were obtained. The mean protein fold determined in this manner agrees with the X-ray structure with a backbone atom root-mean-square deviation of 1.8 Å.
Chromatin is a supramolecular assembly of DNA and histone proteins, organized into nucleosome repeat units. The dynamics of chromatin organization regulates DNA accessibility to eukaryotic transcription and DNA repair complexes. However, the structural and dynamic properties of chromatin at high concentrations characteristic of the cellular environment (> ~200 mg/ml) are largely unexplored at the molecular level. Here, we apply magic angle spinning nuclear magnetic resonance to directly probe the dynamic histone protein regions in 13C,15N-enriched recombinant nucleosome arrays at cellular chromatin concentrations and conditions designed to emulate distinct states of DNA condensation, with focus on the flexible H3 and H4 N-terminal tails which mediate chromatin compaction. 2D 1H-13C and 1H-15N spectra reveal numerous correlations for H3 and H4 backbone and side-chain atoms, enabling identification of specific residues making up the dynamically disordered N-terminal tail domains. Remarkably, we find that both the H3 and H4 N-terminal tails are overall dynamic even in a highly condensed state. This significant conformational flexibility of the histone tails suggests that they remain available for protein binding in compact chromatin states to enable regulation of heterochromatin. Furthermore, our study provides a foundation for quantitative structural and dynamic investigations of chromatin at physiological concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.