We apply the 2D wavelet transform (WTMM) method to perform a multifractal analysis of digitized mammograms. We show that normal regions display monofractal scaling properties as characterized by the socalled Hurst exponent H 0¡ 3 ¢ 0¡ 1 in fatty areas which look like antipersistent self-similar random surfaces, while H 0¡ 65 ¢ 0¡ 1 in dense areas which exibit long-range correlations and possibly multifractal scaling properties. We further demonstrate that the 2D WTMM method provides a very efficient way to detect tumors as well as microcalcifications (MC) which correspond to much stronger singularities than those involved in the background tissue roughness fluctuations. These preliminary results indicate that the texture discriminatory power of the 2D WTMM method may lead to significant improvement in computer-assisted diagnosis in digitized mammograms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.