In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global wastewater particles behaviour. By comparison to sampling data, our data analysis lead to the characterization of two particle groups: the ones occurring during rain events and the ones typical of wastewater under dry weather conditions. Even with already encouraging results on the several weeks of data recorded on several wastewater collectors, the validation of our data inversion method is still under progress.
Environmental water monitoring requires the estimation of the suspended solids load. In this paper, we compare the concentration range accessible through three different techniques: optical turbidity, acoustic backscattering and the newly in-lab developed time resolved optical turbidity. We focus on their comparison on measurements made in the laboratory on water suspensions of known particles and concentrations. We used laboratory grade kieselguhr, wheat starch and kaolin as suspended solid surrogates. The explored concentration domains are the ones, for the total suspended solid load, commonly encountered in wastewater and rivers in standard (less than 1 g/L to a few g/L) or extreme conditions such as floods or storm events (up to several dozen g/L). Regarding the operable concentration domain, the time resolved optical turbidity shows a clear advantage upon the other methods, whatever the kind of particle is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.