This study investigates the effects of SR141716, a selective CB 1 receptor antagonist that reduces food intake and body weight of rodents, on Acrp30 mRNA expression in adipose tissue. Acrp30, a plasma protein exclusively expressed and secreted by adipose tissue, has been shown to induce free fatty acid oxidation, hyperglycemia and hyperinsulinemia decrease, and body weight reduction. We report that N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716) treatment once daily (10 mg/kg/d, i.p.) from 2 to 14 days reduced body weight and stimulated Acrp30 mRNA expression in adipose tissue of obese Zucker (fa/fa) rats. In parallel, the hyperinsulinemia associated with this animal model was reduced by SR141716 treatment. In cultured mouse adipocytes (3T3 F442A), SR141716 (25 to 100 nM) also induced an overexpression of Acrp30 mRNA and protein. In addition, in adipose tissue of CB 1 -receptor knockout mice, SR141716 had no effect on Acrp30 mRNA expression, demonstrating a CB 1 receptor mediating effect. Furthermore, RT-PCR analysis revealed that rat adipose tissue and 3T3 F442A adipocytes expressed CB 1 receptor mRNA. Relative quantification of this expression revealed an up-regulation (3-to 4-fold) of CB 1 receptor mRNA expression in adipose tissue of obese (fa/fa) rats and in differentiated 3T3 F442A adipocytes compared with lean rats and undifferentiated adipocytes, respectively. Western blot analysis revealed the presence of CB 1 receptors in 3T3 F442A adipocytes, and their expression was up-regulated in differentiated cells. These results show that SR141716 stimulated Acrp30 mRNA expression in adipose tissue by an effect on adipocytes, and reduced hyperinsulinemia in obese (fa/fa) rats. These hormonal regulations may participate in the body weight reduction induced by SR141716 and suggest a role of metabolic regulation in the antiobesity effect of SR141716.
SR 141716, a selective central CB1 cannabinoid receptor antagonist, markedly and selectively reduces sucrose feeding and drinking as well as neuropeptide Y-induced sucrose drinking in rats. SR 141716 also decreases ethanol consumption in C57BL/6 mice. In contrast, blockade of CB1 receptors only marginally affects regular chow intake or water drinking. The active doses of SR 141716 (0.3-3 mg/kg) are in the range known to antagonize the characteristic effects induced by cannabinoid receptor agonists. These results suggest for the first time that endogenous cannabinoid systems may modulate the appetitive value of sucrose and ethanol, perhaps by affecting the activity of brain reward systems.
The central CB(1) cannabinoid receptor has recently been implicated in brain reward function. In the present study we evaluated first the effects of the selective CB(1) receptor antagonist, SR141716, on the motivational effects of nicotine in the rat. Administration of SR141716 (0.3 and 1 mg/kg) decreased nicotine self-administration (0.03 mg/kg/injection). SR141716 (0.3-3 mg/kg) neither substituted for nicotine nor antagonized the nicotine cue in a nicotine discrimination procedure, but dose-dependently (0.01-1 mg/kg) antagonized the substitution of nicotine for D-amphetamine, in rats trained to discriminate D-amphetamine. Secondly, using brain microdialysis, SR141716 (1-3 mg/kg) blocked nicotine-induced dopamine release in the shell of the nucleus accumbens (NAc) and the bed nucleus of the stria terminalis. To investigate whether SR141716 would block the dopamine-releasing effects of another drug of abuse, we extended the neurochemical study to the effect of ethanol, consumption of which in rodents is reduced by SR141716. Dopamine release induced by ethanol in the NAc was also reduced by SR141716 (3 mg/kg). These results suggest that activation of the endogenous cannabinoid system may participate in the motivational and dopamine-releasing effects of nicotine and ethanol. Thus, SR141716 may be effective in reduction of alcohol consumption, as previously suggested, and as an aid for smoking cessation.
We investigated the molecular events involved in the long-lasting reduction of adipose mass by the selective CB1 antagonist, SR141716. Its effects were assessed at the transcriptional level both in white (WAT) and brown (BAT) adipose tissues in a diet-induced obesity model in mice. Our data clearly indicated that SR141716 reversed the phenotype of obese adipocytes at both macroscopic and genomic levels. First, oral treatment with SR141716 at 10 mg/kg/d for 40 days induced a robust reduction of obesity, as shown by the 50% decrease in adipose mass together with a major restoration of white adipocyte morphology similar to lean animals. Second, we found that the major alterations in gene expression levels induced by obesity in WAT and BAT were mostly reversed in SR141716-treated obese mice. Importantly, the transcriptional patterns of treated obese mice were similar to those obtained in the CB1 receptor knockout mice fed a high-fat regimen and which are resistant to obesity, supporting a CB1 receptor-mediated process. Functional analysis of these modulations indicated that the reduction of adipose mass by the molecule resulted from an enhanced lipolysis through the induction of enzymes of the beta-oxidation and TCA cycle, increased energy expenditure, mainly through futile cycling (calcium and substrate), and a tight regulation of glucose homeostasis. These changes accompanied a significant cellular remodeling and contributed to a reduction of the obesity-related inflammatory status. In addition to a transient reduction of food consumption, increases of both fatty acid oxidation and energy expenditure induced by the molecule summate leading to a sustained weight loss. Altogether, these data strongly indicate that the endocannabinoid system has a major role in the regulation of energy metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.