Serverless computing has emerged as a new compelling paradigm for the deployment of applications and services. It represents an evolution of cloud programming models, abstractions, and platforms, and is a testament to the maturity and wide adoption of cloud technologies. In this chapter, we survey existing serverless platforms from industry, academia, and open source projects, identify key characteristics and use cases, and describe technical challenges and open problems.
Abstract. We present a semi-decision procedure for checking satisfiability of expressive correctness properties of recursive first-order functional programs. In our approach, both properties and programs are expressed in the same language, a subset of Scala. We implemented our procedure and integrated it with the Z3 SMT solver and the Scala compiler. Our procedure is sound for counterexamples and for proofs of terminating functions. It is terminating and thus complete for many important classes of specifications, including all satisfiable formulas and all formulas where recursive functions satisfy certain syntactic restrictions. Using our system, Leon, we verified detailed correctness properties for functional data structure implementations, as well as syntax tree manipulations. We have found our system to be fast for both finding counterexamples and finding correctness proofs, and to scale to larger programs than alternative techniques.
We describe a family of decision procedures that extend the decision procedure for quantifier-free constraints on recursive algebraic data types (term algebras) to support recursive abstraction functions. Our abstraction functions are catamorphisms (term algebra homomorphisms) mapping algebraic data type values into values in other decidable theories (e.g. sets, multisets, lists, integers, booleans). Each instance of our decision procedure family is sound; we identify a widely applicable many-to-one condition on abstraction functions that implies the completeness. Complete instances of our decision procedure include the following correctness statements: 1) a functional data structure implementation satisfies a recursively specified invariant, 2) such data structure conforms to a contract given in terms of sets, multisets, lists, sizes, or heights, 3) a transformation of a formula (or lambda term) abstract syntax tree changes the set of free variables in the specified way.
Synthesis of program fragments from specifications can make programs easier to write and easier to reason about. To integrate synthesis into programming languages, synthesis algorithms should behave in a predictable way-they should succeed for a well-defined class of specifications. They should also support unbounded data types such as numbers and data structures. We propose to generalize decision procedures into predictable and complete synthesis procedures. Such procedures are guaranteed to find code that satisfies the specification if such code exists. Moreover, we identify conditions under which synthesis will statically decide whether the solution is guaranteed to exist, and whether it is unique. We demonstrate our approach by starting from decision procedures for linear arithmetic and data structures and transforming them into synthesis procedures. We establish results on the size and the efficiency of the synthesized code. We show that such procedures are useful as a language extension with implicit value definitions, and we show how to extend a compiler to support such definitions. Our constructs provide the benefits of synthesis to programmers, without requiring them to learn new concepts or give up a deterministic execution model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.