The structural and functional organization of the fengycin synthetase system from B. subtilis b213 has been characterized in detail and correlated with the corresponding pps and fen genes in B. subtilis strains 168, A1/3 and F29-3. Biosynthesis of the peptide part of fengycin involves five multifunctional modular proteins that assemble the lipopeptide chain using a nonribosomal, multiple carrier thiotemplate mechanism.
SUMMARYIsocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO 2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14 N/ 15 N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in b-oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.
Tn5 mutagenesis of different fluorescent pseudomonads was achieved by conjugational transfer of the suicide vector @UP 10141. Pyoverdine negative (Pvd-) mutants were detected by the absence of fluorescence on King's B medium and by their inability to grow in the presence of the iron chelator EDDHA [ethylenediamine di(ohydroxyphenylacetic acid)j. In P.j?uorescens ATCC 17400 and three rhizosphere isolates (one P. putida and two P. fluorescens), the percentage of Pvd-mutants ranged between 0 and 0.54%. In a P. chlororuphis rhizosphere isolate, this percentage was higher (4 %). In these mutants both of the Tn5 antibiotic resistances (Km and Tc) were stable and the transposon could be detected by hybridization. In Pvd-mutants of P.j?uorescens ATCC 17400, the transposon was found to be inserted twice in the chromosome while single insertions were detected in the DNA of other, randomly tested mutants. In P. aeruginosa PAO1, where 13-1 % of the mutants were Pvd-, both antibiotic resistances were rapidly lost and accordingly no transposon insertion could be detected by hybridization. However, the Pvd-phenotype was generally stable in these mutants. The plasmid pNK862 containing a mini-TnlU transposon was introduced by electroporation into P. aeruginosa P A 0 1 and Kmr mutants were recovered, 89 % of which were Pvd-and confirmed to be P. aeruginosa by PCR amplification of the P. aeruginosa lipoprotein gene.The mini-Tnl0 insertions were also found to be unstable in PAO1.
The mutualistic relationships between certain ant and aphid species are well known, the primary benefits being protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remain, however, as to the exact semiochemical factors that establish and maintain such relationships. In this study, we used a series of treatments and associated controls placed at the end of a two-way olfactometer to determine the degree of attractiveness of a complete plant-aphid-honeydew system as well as individual components of that system. Both the olfactometer branch selected by the black garden ant (Lasius niger) and the linear speed with which ants moved through the device were measured. Study results showed that ants were attracted not just to the complete plant system and the honeydew itself, but also to the microbial flora in the absence of plant or honeydew, and specifically to a bacterium from the black bean aphid (Aphis fabae) honeydew, Staphylococcus xylosus. This bacterium produces a blend of semiochemicals that attract the ant scouts. This information suggests the presence of a naturally occurring, reliable biotic cue for detection of potential aphid partners. This would have to be confirmed in natural conditions by further field experiments. Rather than being opportunistic species that coincidentally colonize a sugarrich environment, microorganisms living in aphid honeydew may be able to alter emissions of volatile organic compounds (VOCs), thus significantly mediating partner attraction. A bacterial involvement in this mutualistic relationship could alter the manner in which these and similar relationships are viewed and evaluated. Future studies into mutualism stability and function among macroscopic partners will likely need for transition from a two-partner perspective to a multiple-partner perspective, and consider the microbial component, with the potential for one or more taxa making significant contributions to the relationship.
An oil obtained from the dried leaves of Lavandula stoechas L. in 0.77% yield was analyzed by capillaryGC and GC/MS. Fenchone (68.2%) and camphor (11.2%) were the main components of the 28 identified molecules. This oil has been tested for antimicrobial activity against six bacteria, and two fungi. The results showed that this oil was active against all of the tested strains; Staphylococcus aureus was the more sensitive strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.