Cotyledon explants from mature peanut seeds (Arachis hypogaea L.) were optimized to obtain adventitious shoot buds with high frequencies (>90%). Efficient transformation of these cotyledons by using Agrobacterium tumefaciens strain C58 carrying neomycin phosphotransferase II (nptII) and ß-glucuronidase (GUS; uidA), or coat protein gene of the Indian peanut clump virus (IPCVcp) and nptII on binary vectors (pBI121; pROKII:IPCVcp) led to the production of a large percentage (55%) of transgenic plants. Transformed individuals were obtained through selection on medium containing 125 mg l(-1) kanamycin. A large number of independently transformed plants (over 75) were successfully transplanted to the glasshouse. Integration of the transgenes and stable genetic transformants in the progeny were assessed by PCR amplification of 700-bp fragment of nptII and 585-bp of IPCVcp genes, and Southern blot hybridizations in the T1 generation of transgenic plants. Analysis of 35 transgenic plants of T1 generation from the progeny of a single transformation event suggested the segregation of a single copy insert in a 3:1 Mendelian ratio. On an average, 120-150 days were required between the initiation of explant transformation and transfer of rooted plants to the greenhouse. The cotyledon regeneration system proved to be an excellent vehicle for the production of a large number of independently transformed peanut plants. Shoot formation was rapid and prolific, and a large proportion of these shoots developed into fertile plants. The method reported here provides new opportunities for the crop improvement of peanut via genetic transformation.
Pseudomonas aeruginosa PNA1, isolated from the rhizosphere of chickpea in India, suppressed Fusarium wilt of chickpea, caused by Fusarium oxysporum f. sp. ciceris, and Pythium damping-off of bean, caused by Pythium splendens. When grown in culture, PNA1 produced the phenazine antibiotics phenazine-1-carboxylic acid and oxychloraphine, and inhibited mycelial growth of F. oxysporum f. sp. ciceris, P. splendens, and certain other phytopathogenic fungi. Two mutants (FM29 and FM13) deficient in phenazine production were obtained following transposon mutagenesis of PNA1. The transposon in the genome of FM29 was localized to phnA, which is thought to encode a subunit of anthranilate synthase II involved in the phenazine biosynthesis. The FM13 mutation was complemented by trpC, which encodes indole glycerol phosphate synthase in the tryptophan biosynthesis pathway; consequently, FM13 could not grow on a minimal medium in the absence of tryptophan. Neither FM29 nor FM13 suppressed Fusarium wilt of chickpea to the level achieved by the wild-type strain, indicating that phenazine production contributed to the biocontrol of this disease by P. aeruginosa PNA1. FM29 was also less effective than the phenazine-producing parental strain in biological control of Pythium damping-off of bean, but FM13 was as effective as the parental strain in suppressing this disease. Anthranilate, an intermediate in the tryptophan biosynthesis pathway, suppressed mycelial growth of Pythium spp. in culture and Pythium damping-off of bean and lettuce. Anthranilate, excreted by FM13 as a consequence of the trpC mutation, may have contributed to the suppression of Pythium damping-off by the mutant.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of 59 Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdinedeficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.
Pseudomonas aeruginosa PNA1, an isolate from chickpea rhizosphere in India, protected pigeonpea and chickpea plants from fusarium wilt disease, which is caused by Fusarium oxysporum f.sp. ciceris and Fusarium udum. Inoculation with strain PNA1 significantly reduced the incidence of fusarium wilt in pigeonpea and chickpea on both susceptible and moderately tolerant genotypes. However, strain PNA1 protected the plants from fusarium wilt until maturity only in moderately tolerant genotypes of pigeonpea and chickpea. Root colonization of pigeonpea and chickpea, which was measured using a lacZ-marked strain of PNA1, showed tenfold lower root colonization of susceptible genotypes than that of moderately tolerant genotypes, indicating that this plant-bacteria interaction could be important for disease suppression in this plant. Strain PNA1 produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychlororaphin, in vitro. Its Tn5 mutants (FM29 and FM13), which were deficient in phenazine production, caused a reduction or loss of wilt disease suppression in vivo. Hence, phenazine production by PNA1 also contributed to the biocontrol of fusarium wilt diseases in pigeonpea and chickpea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.