The discovery that a common polymorphism (5-HTTLPR, short variant) in the human serotonin transporter gene (SLC6A4) can influence personality traits and increase the risk for depression in adulthood has led to the hypothesis that a relative increase in the extracellular levels of serotonin (5-HT) during development could be critical for the establishment of brain circuits. Consistent with this idea, a large body of data demonstrate that 5-HT is a strong neurodevelopmental signal that can modulate a wide variety of cellular processes. In humans, serotonergic fibers appear in the developing cortex as early as the 10th gestational week, a period of intense neuronal migration. In this study we hypothesized that an excess of 5-HT could affect embryonic cortical interneuron migration. Using time-lapse videometry to monitor the migration of interneurons in embryonic mouse cortical slices, we discovered that the application of 5-HT decreased interneuron migration in a reversible and dose-dependent manner. We next found that 5-HT6 receptors were expressed in cortical interneurons and that 5-HT6 receptor activation decreased interneuron migration, whereas 5-HT6 receptor blockade prevented the migratory effects induced by 5-HT. Finally, we observed that interneurons were abnormally distributed in the cerebral cortex of serotonin transporter gene (Slc6a4) knockout mice that have high levels of extracellular 5-HT. These results shed new light on the neurodevelopmental alterations caused by an excess of 5-HT during the embryonic period and contribute to a better understanding of the cellular processes that could be modulated by genetically controlled differences in human 5-HT homeostasis.
Uncoupling protein 2 (UCP2) is suggested to be a regulator of reactive oxygen species production in mitochondria. We performed a detailed study of brain injury, including regional and cellular distribution of UCP2 mRNA, as well as measures of oxidative stress markers following permanent middle cerebral artery occlusion in UCP2 knockout (KO) and wild-type (WT) mice. Three days post ischemia, there was a massive induction of UCP2 mRNA confined to microglia in the peri-infarct area of WT mice. KO mice were less sensitive to ischemia as assessed by reduced brain infarct size, decreased densities of deoxyuridine triphosphate nick end-labelling (TUNEL)-labelled cells in the peri-infact area and lower levels of lipid peroxidation compared with WT mice. This resistance may be related to the substantial increase of basal manganese superoxide dismutase levels in neurons of KO mice. Importantly, we found a specific decrease of mitochondrial glutathione (GSH) levels in UCP2 expressing microglia of WT, but not in KO mice after ischemia. This specific association between UCP2 and mitochondrial GSH levels regulation was further confirmed using lipopolysaccharide models of peripheral inflammation, and in purified peritoneal macrophages. Moreover, our data imply that UCP2 is not directly involved in the regulation of ROS production but acts by regulating mitochondrial GSH levels in microglia. Keywords: cerebral ischemic injury, glutathione, lipopolysaccharide, reactive oxygen species, superoxide dismutase, uncoupling protein 2. Uncoupling protein 2 (UCP2) (Fleury et al. 1997;Boss et al. 2000;Ricquier and Bouillaud 2000) a homologue of the brown adipose tissue-specific proton transporter UCP1, belongs to the mitochondrial anion carrier family that are present in the inner mitochondrial membrane (el Moualij et al. 1997). The UCP2 gene is expressed in most tissues (Fleury et al. 1997;Gimeno et al. 1997;Pecqueur et al. 2001) including brain (Richard et al. 1998). Whereas the main function of UCP1 in rodents is to produce heat by allowing
Several studies have demonstrated that the accurate visualization and quantification of pathological lesions in neurodegenerative disorders depend on the reliability of staining methods. In an attempt to gain a better assessment of the density and distribution of the neuropathological markers of Alzheimer's disease, we compared the staining efficiency of a modified thioflavine S protocol for neurofibrillary tangles (NFT) and senile plaques (SP) to different argentic impregnation techniques (Bielchowsky, Gallyas, Globus, Campbell-Switzer-Martin) and to immunohistochemical stainings obtained with two different antibodies against the amyloid beta protein A4 and the microtubule-associated tau protein. The modified thioflavine S technique (MTST) detects up to 60% more SP and up to 50% more NFT than the Bielschowsky and Globus methods, respectively. The results obtained with the specific antibodies are comparable to those obtained with the MTST, but these immunotechniques are more expensive and time consuming for routine neuropathological evaluation, and the appropriate antibodies are not always commercially available. Furthermore, the morphological appearance of NFT and SP with MTST is greatly improved when compared to the classical thioflavine S and the increased signal-to-noise ratio between specifically stained structures and background permits an accurate semi-automatic quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.