The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Melting curves are commonly used to determine the stability of folded nucleic acid structures and their interaction with ligands. This paper describes how the technique can be applied to study the properties of four-stranded nucleic acid structures that are formed by G-rich oligonucleotides. Changes in the absorbance (at 295nm), circular dichroism (at 260 or 295nm) or fluorescence of appropriately labelled oligonucleotides, can be used to measure the stability and kinetics of folding. This paper focuses on a fluorescence melting technique, and explains how this can be used to determine the T(m) (T((1/2))) of intramolecular quadruplexes and the effects of quadruplex-binding ligands. Quantitative analysis of these melting curves can be used to determine the thermodynamic (DeltaH, DeltaG, and DeltaS) and kinetic (k(1), k(-1)) parameters. The method can also be adapted to investigate the equilibrium between quadruplex and duplex DNA and to explore the selectivity of ligands for one or other structure.
We have examined the folding, stability and kinetics of intramolecular quadruplexes formed by DNA sequences containing four G3 tracts separated by either single T or T4 loops. All these sequences fold to form intramolecular quadruplexes and 1D-NMR spectra suggest that they each adopt unique structures (with the exception of the sequence with all three loops containing T4, which is polymorphic). The stability increases with the number of single T loops, though the arrangement of different length loops has little effect. In the presence of potassium ions, the oligonucleotides that contain at least one single T loop exhibit similar CD spectra, which are indicative of a parallel topology. In contrast, when all three loops are substituted with T4 the CD spectrum is typical of an antiparallel arrangement. In the presence of sodium ions, the sequences with two and three single T loops also adopt a parallel folded structure. Kinetic studies on the complexes with one or two T4 loops in the presence of potassium ions reveal that sequences with longer loops display slower folding rates.
We have examined the properties of intramolecular G-quadruplexes in which the G3 tracts are separated by single base loops. The most stable complex contained 1 0 ,2 0 -dideoxyribose in all three loops, while loops containing T and C were slightly less stable (by about 2°C). Quadruplexes containing loops with single A residues were less stable by 8°C for each T to A substitution. These folded sequences display similar CD spectra, which are consistent with the formation of parallel stranded complexes with double-chain reversal loops. These results demonstrate that loop sequence, and not just length, affects quadruplex stability.
G-Rich sequences are known to form four-stranded structures that are based on stacks of G-quartets, and sequences with the potential to adopt these structures are common in eukaryotic genomes. However, there are few rules for predicting the relative stability of folded complexes that are adopted by sequences with different-length G-tracts or variable-length linkers between them. We have used thermal melting, circular dichroism, and gel electrophoresis to examine the topology and stability of intramolecular G-quadruplexes that are formed by sequences of the type d(GnT)4 and d(GnT2)4 (n = 3-7) in the presence of varying concentrations of sodium and potassium. In the presence of potassium or sodium, d(GnT)4 sequences form intramolecular parallel complexes with the following order of stability: n = 3 > n = 7 > n = 6 > n = 5 > n = 4. d(G3T)4 is anomalously stable. In contrast, the stability of d(GnT2)4 increases with the length of the G-tract (n = 7 > n = 6 > n = 5 > n = 4 > n = 3). The CD spectra for d(GnT)4 in the presence of potassium exhibit positive peaks around 260 nm, consistent with the formation of parallel topologies. These peaks are retained in sodium-containing buffers, but when n = 4, 5, or 6, CD maxima are observed around 290 nm, suggesting that these sequences [especially d(G5T)4] have some antiparallel characteristics. d(G3T2)4 adopts a parallel conformation in the presence of both sodium and potassium, while all the other d(GnT2)4 complexes exhibit predominantly antiparallel features. The properties of these complexes are also affected by the rate of annealing, and faster rates favor parallel complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.