See Mormann and Andrzejak (doi:) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.
During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "concentrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.
We report for the first time below 1.5 keV, the detection of a secondary peak in an Eddington-limited thermonuclear X-ray burst observed by the Neutron Star Interior Composition Explorer (NICER) from the low-mass X-ray binary 4U 1608-52. Our time-resolved spectroscopy of the burst is consistent with a model consisting of a varying-temperature blackbody, and an evolving persistent flux contribution, likely attributed to the accretion process. The dip in the burst intensity before the secondary peak is also visible in the bolometric flux. Prior to the dip, the blackbody temperature reached a maximum of ≈ 3 keV. Our analysis suggests that the dip and secondary peak are not related to photospheric expansion, varying circumstellar absorption, or scattering. Instead, we discuss the observation in the context of hydrodynamical instabilities, thermonuclear flame spreading models, and re-burning in the cooling tail of the burst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.