Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.
Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest‐associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest–grassland biome boundaries.
Summary Fossil grass silica short cell phytoliths (GSSCP) have been used to reconstruct the biogeography of Poaceae, untangle crop domestication history and detect past vegetation shifts. These inferences depend on accurately identifying the clade to which the fossils belong. Patterns of GSSCP shape and size variation across the family have not been established and current classification methods are subjective or based on a 2D view that ignores important 3D shape variation. Focusing on Poaceae subfamilies Anomochlooideae, Pharoideae, Pueliodieae, Bambusoideae and Oryzoideae, we observed in situ GSSCP to establish their orientation and imaged isolated GSSCP using confocal microscopy to produce 3D models. 3D geometric morphometrics was used to analyze GSSCP shape and size. Classification models were applied to GSSCP from Eocene sediments from Nebraska, USA, and Anatolia, Turkey. There were significant shape differences between nearly all recognized GSSCP morphotypes and between clades with shared morphotypes. Most of the Eocene GSSCP were classified as woody bamboos with some distinctive Nebraska GSSCP classified as herbaceous bamboos. 3D morphometrics hold great promise for GSSCP classification. It accounts for the complete GSSCP shape, automates size measurements and accommodates the complete range of morphotypes within a single analytical framework.
Premise of the StudyA refined procedure is described for modeling small, intricate plant structures using computer‐aided design software. The procedure facilitates the study of wind pollination in the family Poaceae and provides virtual biological illustrations for public outreach.Methods and ResultsSpikelets were fixed in gFAA, dehydrated using ethanol and xylene, embedded in paraffin wax, and then sectioned with a rotary microtome. Images of serial sections were used as a reference for modeling the shape of bracts with splines in a computer‐aided design program. Virtual models produced by this method have many potential uses; examples include geometric morphometric analyses and simulations of computational fluid dynamics.ConclusionsThis protocol is a synthesis of modern biological illustration and engineering technology. Virtual models facilitate quantitative experiments that may address questions about reproductive biology, conditions shaping the form of anatomical support, or the morphological evolution of structures of biomechanical interest.
Pollen from a naturally occurring population of the forest grass species Diarrhena obovata was successfully captured in a series of pollen traps to understand the timing of anthesis and the dispersal mechanics of wind pollination in an example of the flowering plant family Poaceae. Scanning electron microscopy was used to identify the pollen surface ornamentation as microechinate-areolate. The spherical grains have a diameter of 38.74 μm. The settling velocity calculated by Stoke’s Law was 4.48 cm s-1, but physical measurement by drop tower experiments resulted in 3.77 ± 0.15 cm s-1 (sd). The surface ornamentation observed in D. obovata pollen is not expected to alter drag forces considerably but the reduction of settling velocity may be a result of species-specific pollen grain density. In forest grasses an improvement in settling velocity may be adaptive in overcoming dispersal constraints in an environment where trees obstruct wind speeds and create more turbulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.