Riboswitches are commonly used by bacteria to detect a variety of metabolites and ions to regulate gene expression. To date, nearly 40 different classes of riboswitches have been discovered, experimentally validated, and modeled at atomic resolution in complex with their cognate ligands. The research findings produced since the first riboswitch validation reports in 2002 reveal that these noncoding RNA domains exploit many different structural features to create binding pockets that are extremely selective for their target ligands. Some riboswitch classes are very common and are present in bacteria from nearly all lineages, whereas others are exceedingly rare and appear in only a few species whose DNA has been sequenced. Presented herein are the consensus sequences, structural models, and phylogenetic distributions for all validated riboswitch classes. Based on our findings, we predict that there are potentially many thousands of distinct bacterial riboswitch classes remaining to be discovered, but that the rarity of individual undiscovered classes will make it increasingly difficult to find additional examples of this RNA-based sensory and gene control mechanism.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous ⌺1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth. INTRODUCTIONIn its most familiar growth form, the baker's yeast Saccharomyces cerevisiae divides mitotically by budding, forming two independent and separate daughter cells from a single mother cell. In response to specific environmental cues, however, some strains of S. cerevisiae are capable of forming multicellular filaments-chains of cells that remain physically connected after cytokinesis (Gimeno et al., 1992;Kron, 1997;Madhani and Fink, 1998). In yeast, this form of filamentous growth is thought to constitute a foraging mechanism initiated under conditions of limited nutrient availability (Gimeno et al., 1992;Liu et al., 1993;Cullen and Sprague, 2000). Similar filamentous growth transitions are evident in many fungal species; in particular, many fungal pathogens transition between unicellular and filamentous growth forms, and, in fact, this transition is required for virulence in most of these organisms (Alspaugh et al., 1997;Lo et al., 1997b). For example, in the opportunistic human pathogen Candida albicans, environmental cues of temperature, pH, and serum source have been found to trigger a distinct morphogenetic program resulting in the transition from a cellular yeast form to a filamentous growth form (Liu et al., 1994; Singh et al., 1997). Furthermore, a mutant strain of C. albicans impaired in its ability to undergo filamentous growth is avirulent in a mouse model of disseminated candidiasis (Lo et al., 1997a). Thus, filamentous growth is relevant to our understanding of fungal pathogenesis, and the budding ye...
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications.
SUMMARY Previously, two riboswitch classes have been identified that sense and respond to the hypermodified nucleobase called pre-queuosine1 (preQ1). The enormous expansion of available genomic DNA sequence data creates new opportunities to identify additional representatives of the known riboswitch classes and to discover novel classes. We conducted bioinformatics searches on microbial genomic DNA datasets to discover numerous additional examples belonging to the two previously known riboswitch classes for preQ1 (classes preQ1-I and preQ1-II), including some structural variants that further restrict ligand specificity. Additionally, we discovered a third preQ1-binding riboswitch class (preQ1-III) that is structurally distinct from previously known classes. These findings demonstrate that numerous organisms monitor the concentrations of this modified nucleobase by exploiting one or more riboswitch classes for this widespread compound.
Major changes in bacterial physiology including biofilm and spore formation involve signaling by the cyclic dinucleotides c-di-GMP and c-di-AMP. Recently, another second messenger dinucleotide, c-AMP-GMP, was found to control chemotaxis and colonization by Vibrio cholerae. We have identified a superregulon of genes controlled by c-AMP-GMP in numerous Deltaproteobacteria, including Geobacter species that use extracellular insoluble metal oxides as terminal electron acceptors. This exoelectrogenic process has been studied for its possible utility in energy production and bioremediation. Many genes involved in adhesion, pilin formation, and others that are important for exoelectrogenesis are controlled by members of a variant riboswitch class that selectively bind c-AMP-GMP. These RNAs constitute, to our knowledge, the first known specific receptors for c-AMP-GMP and reveal that this molecule is used by many bacteria to control specialized physiological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.