Defects in nuclear morphology often correlate with the onset of disease, including cancer, progeria, cardiomyopathy, and muscular dystrophy. However, the mechanism by which a cell controls its nuclear shape is unknown. Here, we use adhesive micropatterned surfaces to control the overall shape of fibroblasts and find that the shape of the nucleus is tightly regulated by the underlying cell adhesion geometry. We found that this regulation occurs through a dome-like actin cap that covers the top of the nucleus. This cap is composed of contractile actin filament bundles containing phosphorylated myosin, which form a highly organized, dynamic, and oriented structure in a wide variety of cells. The perinuclear actin cap is specifically disorganized or eliminated by inhibition of actomyosin contractility and rupture of the LINC complexes, which connect the nucleus to the actin cap. The organization of this actin cap and its nuclear shape-determining function are disrupted in cells from mouse models of accelerated aging (progeria) and muscular dystrophy with distorted nuclei caused by alterations of A-type lamins. These results highlight the interplay between cell shape, nuclear shape, and cell adhesion mediated by the perinuclear actin cap.LINC complexes ͉ nucleus I n 1921, Champy and Carleton suggested an apparent correlation between the shape of various types of animal cells and the shape of their respective nuclei (1). Moreover, defects in nuclear shape are routinely used in the lab and in clinical settings as markers of disease and differentiation in human cells and tissues (2). However, remarkably little is known about the factors that determine nuclear morphology in living cells. In particular, the molecular mechanisms that govern the shape of the interphase nucleus are unknown. Here we show that an actin filament structure that forms a cap or dome located above the apical surface of the nucleus tightly controls nuclear shape and identify key associated cytoskeletal regulators of its organization and nuclear shape-determining function. The organization and function of the perinuclear actin cap are deregulated in diseased cells with distorted nuclei. Results and DiscussionTo test the hypothesis of a correlation between the shape of the nucleus and the overall cell shape, mouse embryonic fibroblasts were dispersed on fibronectin (FN)-coated glass substrates. Using morphometric analysis, we found that nuclear shape and cellular shape correlated ( Fig. 1 A and B). Shape factor, defined as 4 A/P 2 (where A and P are the nuclear area and perimeter), approaches 1 for a rounded nucleus and approaches 0 for an elongated nucleus. Elongated cells typically showed an elongated nucleus of low shape factor; rounded cells showed a rounded nucleus of high shape factor (Fig. 1 A). To control cell shape and, therefore, be able to quantify nuclear shape as a function of cell shape, we developed adhesive FN-coated micropatterned stripes of width ranging between 10 and 50 m, which alternated with stripes covered with nonadhesive poly...
The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.
Laminopathies encompass a wide array of human diseases associated to scattered mutations along LMNA, a single gene encoding A-type lamins. How such genetic alterations translate to cellular defects and generate such diverse disease phenotypes remains enigmatic. Recent work has identified nuclear envelope proteins--emerin and the linker of the nucleoskeleton and cytoskeleton (LINC) complex--which connect the nuclear lamina to the cytoskeleton. Here we quantitatively examine the composition of the nuclear envelope, as well as the architecture and functions of the cytoskeleton in cells derived from two laminopathic mouse models, including Hutchinson-Gilford progeria syndrome (Lmna(L530P/L530P)) and Emery-Dreifuss muscular dystrophy (Lmna(-/-)). Cells derived from the overtly aphenotypical model of X-linked Emery-Dreifuss muscular dystrophy (Emd(-/y)) were also included. We find that the centrosome is detached from the nucleus, preventing centrosome polarization in cells under flow--defects that are mediated by the loss of emerin from the nuclear envelope. Moreover, while basal actin and focal adhesion structure are mildly affected, RhoA activation, cell-substratum adhesion, and cytoplasmic elasticity are greatly lowered, exclusively in laminopathic models in which the LINC complex is disrupted. These results indicate a new function for emerin in cell polarization and suggest that laminopathies are not directly associated with cells' inability to polarize, but rather with cytoplasmic softening and weakened adhesion mediated by the disruption of the LINC complex across the nuclear envelope.
There is significant evidence that brain-infiltrating CD8+ T cells play a central role in the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the mechanisms through which they mediate their pathogenic activity during malaria infection remain poorly understood. Utilizing intravital two-photon microscopy combined with detailed ex vivo flow cytometric analysis, we show that brain-infiltrating T cells accumulate within the perivascular spaces of brains of mice infected with both ECM-inducing (P. berghei ANKA) and non-inducing (P. berghei NK65) infections. However, perivascular T cells displayed an arrested behavior specifically during P. berghei ANKA infection, despite the brain-accumulating CD8+ T cells exhibiting comparable activation phenotypes during both infections. We observed T cells forming long-term cognate interactions with CX3CR1-bearing antigen presenting cells within the brains during P. berghei ANKA infection, but abrogation of this interaction by targeted depletion of the APC cells failed to prevent ECM development. Pathogenic CD8+ T cells were found to colocalize with rare apoptotic cells expressing CD31, a marker of endothelial cells, within the brain during ECM. However, cellular apoptosis was a rare event and did not result in loss of cerebral vasculature or correspond with the extensive disruption to its integrity observed during ECM. In summary, our data show that the arrest of T cells in the perivascular compartments of the brain is a unique signature of ECM-inducing malaria infection and implies an important role for this event in the development of the ECM-syndrome.
Virus-specific cytotoxic CD8+ T cells are in cell cycle as they transit from lymphoid tissues to sites of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.